An Entity of Type : yago:Artifact100021939, within Data Space : dbpedia.org associated with source document(s)

In mathematics, the monkey saddle is the surface defined by the equation or in cylindrical coordinates It belongs to the class of saddle surfaces, and its name derives from the observation that a saddle for a monkey would require two depressions for the legs and one for the tail. The point (0,0,0) on the monkey saddle corresponds to a degenerate critical point of the function z(x,y) at (0, 0). The monkey saddle has an isolated umbilical point with zero Gaussian curvature at the origin, while the curvature is strictly negative at all other points.

AttributesValues
rdf:type
rdfs:label
rdfs:comment
• In mathematics, the monkey saddle is the surface defined by the equation or in cylindrical coordinates It belongs to the class of saddle surfaces, and its name derives from the observation that a saddle for a monkey would require two depressions for the legs and one for the tail. The point (0,0,0) on the monkey saddle corresponds to a degenerate critical point of the function z(x,y) at (0, 0). The monkey saddle has an isolated umbilical point with zero Gaussian curvature at the origin, while the curvature is strictly negative at all other points.
foaf:depiction
foaf:isPrimaryTopicOf
thumbnail
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
title
urlname
has abstract
• In mathematics, the monkey saddle is the surface defined by the equation or in cylindrical coordinates It belongs to the class of saddle surfaces, and its name derives from the observation that a saddle for a monkey would require two depressions for the legs and one for the tail. The point (0,0,0) on the monkey saddle corresponds to a degenerate critical point of the function z(x,y) at (0, 0). The monkey saddle has an isolated umbilical point with zero Gaussian curvature at the origin, while the curvature is strictly negative at all other points. One can relate the rectangular and cylindrical equations using complex numbers : By replacing 3 in the cylindrical equation with any integer k ≥ 1, one can create a saddle with k depressions. Another orientation of the monkey saddle is the Smelt petal defined by , so that the z-axis of the monkey saddle corresponds to the direction (1,1,1) in the Smelt petal.
prov:wasDerivedFrom
page length (characters) of wiki page
is foaf:primaryTopic of
is Link from a Wikipage to another Wikipage of
is Wikipage disambiguates of
Faceted Search & Find service v1.17_git51 as of Sep 16 2020

Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About

OpenLink Virtuoso version 08.03.3319 as of Dec 29 2020, on Linux (x86_64-centos_6-linux-glibc2.12), Single-Server Edition (61 GB total memory)