About: Message passing in computer clusters     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : dbo:MilitaryUnit, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FMessage_passing_in_computer_clusters

Message passing is an inherent element of all computer clusters. All computer clusters, ranging from homemade Beowulfs to some of the fastest supercomputers in the world, rely on message passing to coordinate the activities of the many nodes they encompass. Message passing in computer clusters built with commodity servers and switches is used by virtually every internet service.

AttributesValues
rdf:type
rdfs:label
  • Message passing in computer clusters (en)
rdfs:comment
  • Message passing is an inherent element of all computer clusters. All computer clusters, ranging from homemade Beowulfs to some of the fastest supercomputers in the world, rely on message passing to coordinate the activities of the many nodes they encompass. Message passing in computer clusters built with commodity servers and switches is used by virtually every internet service. (en)
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/MEGWARE.CLIC.jpg
  • http://commons.wikimedia.org/wiki/Special:FilePath/Roadrunner_supercomputer_HiRes.jpg
  • http://commons.wikimedia.org/wiki/Special:FilePath/Virginia_tech_xserve_cluster.jpg
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
thumbnail
has abstract
  • Message passing is an inherent element of all computer clusters. All computer clusters, ranging from homemade Beowulfs to some of the fastest supercomputers in the world, rely on message passing to coordinate the activities of the many nodes they encompass. Message passing in computer clusters built with commodity servers and switches is used by virtually every internet service. Recently, the use of computer clusters with more than one thousand nodes has been spreading. As the number of nodes in a cluster increases, the rapid growth in the complexity of the communication subsystem makes message passing delays over the interconnect a serious performance issue in the execution of parallel programs. Specific tools may be used to simulate, visualize and understand the performance of message passing on computer clusters. Before a large computer cluster is assembled, a trace-based simulator can use a small number of nodes to help predict the performance of message passing on larger configurations. Following test runs on a small number of nodes, the simulator reads the execution and message transfer log files and simulates the performance of the messaging subsystem when many more messages are exchanged between a much larger number of nodes. (en)
gold:hypernym
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is Wikipage disambiguates of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (62 GB total memory, 53 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software