About: Mackey topology     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Message106598915, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FMackey_topology

In functional analysis and related areas of mathematics, the Mackey topology, named after George Mackey, is the finest topology for a topological vector space which still preserves the continuous dual. In other words the Mackey topology does not make linear functions continuous which were discontinuous in the default topology. A topological vector space (TVS) is called a Mackey space if its topology is the same as the Mackey topology. The Mackey–Arens theorem states that all possible dual topologies are finer than the weak topology and coarser than the Mackey topology.

AttributesValues
rdf:type
rdfs:label
  • Satz von Mackey-Arens
  • Mackey topology
  • マッキー位相
  • Topologia di Mackey
rdfs:comment
  • 函数解析学および関連する数学の分野において、の名にちなむマッキー位相(マッキーいそう、英: Mackey topology)とは、位相線型空間に対する位相で、連続双対を保存するものである。すなわちマッキー位相は、元の位相で不連続である線型函数を連続にすることはない。 マッキー位相は、連続双対において全ての連続函数の連続性を保存する位相線型空間上の位相である弱位相と反対の概念である。 マッキー=アレンスの定理では、すべての双対位相は弱位相より細かく、マッキー位相より粗いことが示されている。
  • Der Satz von Mackey-Arens (nach George Mackey und Richard Friederich Arens) ist ein mathematischer Satz aus der Funktionalanalysis, genauer aus der Theorie der lokalkonvexen Räume. Der Satz von Mackey-Arens behandelt die Frage, in welchen Topologien bestimmte wichtige Abbildungen stetig sind. Es stellt sich heraus, dass es eine schwächste und eine stärkste zulässige Topologie gibt.
  • In functional analysis and related areas of mathematics, the Mackey topology, named after George Mackey, is the finest topology for a topological vector space which still preserves the continuous dual. In other words the Mackey topology does not make linear functions continuous which were discontinuous in the default topology. A topological vector space (TVS) is called a Mackey space if its topology is the same as the Mackey topology. The Mackey–Arens theorem states that all possible dual topologies are finer than the weak topology and coarser than the Mackey topology.
  • In matematica, in particolare in analisi funzionale, la topologia di Mackey o topologia di Arens-Mackey, il cui nome è dovuto a George Mackey, è la topologia più fine per uno spazio vettoriale topologico che preserva il duale continuo. In altri termini, la topologia di Mackey non rende continue funzioni lineari che sono discontinue nella topolgia di default del duale continuo. La topologia di Mackey è l'opposto della topologia debole, che è la topologia più grezza su uno spazio vettoriale topologico che preserva la continuità delle funzioni lineari nel duale continuo.
foaf:isPrimaryTopicOf
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
author
  • A.I. Shtern
id
  • M/m062080
title
  • Mackey topology
has abstract
  • Der Satz von Mackey-Arens (nach George Mackey und Richard Friederich Arens) ist ein mathematischer Satz aus der Funktionalanalysis, genauer aus der Theorie der lokalkonvexen Räume. Der Satz von Mackey-Arens behandelt die Frage, in welchen Topologien bestimmte wichtige Abbildungen stetig sind. Genauer sei ein lokalkonvexer Raum mit einer Topologie gegeben. Dann betrachtet man den Dualraum E' der bezüglich stetigen, linearen Funktionale auf . Die Frage ist nun, welche weiteren lokalkonvexen Topologien auf zu denselben stetigen, linearen Funktionalen wie führen. Solche Topologien heißen zulässig. Es stellt sich heraus, dass es eine schwächste und eine stärkste zulässige Topologie gibt.
  • In functional analysis and related areas of mathematics, the Mackey topology, named after George Mackey, is the finest topology for a topological vector space which still preserves the continuous dual. In other words the Mackey topology does not make linear functions continuous which were discontinuous in the default topology. A topological vector space (TVS) is called a Mackey space if its topology is the same as the Mackey topology. The Mackey topology is the opposite of the weak topology, which is the coarsest topology on a topological vector space which preserves the continuity of all linear functions in the continuous dual. The Mackey–Arens theorem states that all possible dual topologies are finer than the weak topology and coarser than the Mackey topology.
  • In matematica, in particolare in analisi funzionale, la topologia di Mackey o topologia di Arens-Mackey, il cui nome è dovuto a George Mackey, è la topologia più fine per uno spazio vettoriale topologico che preserva il duale continuo. In altri termini, la topologia di Mackey non rende continue funzioni lineari che sono discontinue nella topolgia di default del duale continuo. La topologia di Mackey è l'opposto della topologia debole, che è la topologia più grezza su uno spazio vettoriale topologico che preserva la continuità delle funzioni lineari nel duale continuo. Il afferma che tutte le possibili sono più fini della topologia debole e più grezze della topolgia di Mackey.
  • 函数解析学および関連する数学の分野において、の名にちなむマッキー位相(マッキーいそう、英: Mackey topology)とは、位相線型空間に対する位相で、連続双対を保存するものである。すなわちマッキー位相は、元の位相で不連続である線型函数を連続にすることはない。 マッキー位相は、連続双対において全ての連続函数の連続性を保存する位相線型空間上の位相である弱位相と反対の概念である。 マッキー=アレンスの定理では、すべての双対位相は弱位相より細かく、マッキー位相より粗いことが示されている。
prov:wasDerivedFrom
page length (characters) of wiki page
is foaf:primaryTopic of
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
Faceted Search & Find service v1.17_git51 as of Sep 16 2020


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3319 as of Dec 29 2020, on Linux (x86_64-centos_6-linux-glibc2.12), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2021 OpenLink Software