In graph theory, the Lovász number of a graph is a real number that is an upper bound on the Shannon capacity of the graph. It is also known as Lovász theta function and is commonly denoted by ϑ(G). This quantity was first introduced by László Lovász in his 1979 paper On the Shannon Capacity of a Graph.
Attributes | Values |
---|
rdf:type
| |
rdfs:label
| - Lovász number
- Число Ловаса
|
rdfs:comment
| - Число Ловаса графа — вещественное число, которое является верхней границей ёмкости Шеннона графа. Число Ловаса известно также под именем тета-функция Ловаса и обычно обозначается как . Это число впервые ввёл Ласло Ловас в статье 1979 года «On the Shannon Capacity of a Graph» («О ёмкости Шеннона графа»).
- In graph theory, the Lovász number of a graph is a real number that is an upper bound on the Shannon capacity of the graph. It is also known as Lovász theta function and is commonly denoted by ϑ(G). This quantity was first introduced by László Lovász in his 1979 paper On the Shannon Capacity of a Graph.
|
foaf:isPrimaryTopicOf
| |
dct:subject
| |
Wikipage page ID
| |
Wikipage revision ID
| |
Link from a Wikipage to another Wikipage
| |
Link from a Wikipage to an external page
| |
sameAs
| |
dbp:wikiPageUsesTemplate
| |
title
| - Lovász Number
- Sandwich Theorem
- Shannon Capacity
|
urlname
| - LovaszNumber
- SandwichTheorem
- ShannonCapacity
|
has abstract
| - In graph theory, the Lovász number of a graph is a real number that is an upper bound on the Shannon capacity of the graph. It is also known as Lovász theta function and is commonly denoted by ϑ(G). This quantity was first introduced by László Lovász in his 1979 paper On the Shannon Capacity of a Graph. Accurate numerical approximations to this number can be computed in polynomial time by semidefinite programming and the ellipsoid method.It is sandwiched between the chromatic number and clique number of any graph, and can be used to compute these numbers on graphs for which they are equal, including perfect graphs.
- Число Ловаса графа — вещественное число, которое является верхней границей ёмкости Шеннона графа. Число Ловаса известно также под именем тета-функция Ловаса и обычно обозначается как . Это число впервые ввёл Ласло Ловас в статье 1979 года «On the Shannon Capacity of a Graph» («О ёмкости Шеннона графа»).
|
prov:wasDerivedFrom
| |
page length (characters) of wiki page
| |
is foaf:primaryTopic
of | |
is Link from a Wikipage to another Wikipage
of | |