About: Linear map     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:MathematicalRelation113783581, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FLinear_map

In mathematics, a linear map (also called a linear mapping, linear transformation or, in some contexts, linear function) is a mapping V → W between two modules (for example, two vector spaces) that preserves (in the sense defined below) the operations of addition and scalar multiplication. If a linear map is a bijection then it is called a linear isomorphism. In the language of abstract algebra, a linear map is a module homomorphism. In the language of category theory, it is a morphism in the category of modules over a given ring.

AttributesValues
rdf:type
rdfs:label
  • تحويل خطي
  • Aplicació lineal
  • Lineární zobrazení
  • Lineare Abbildung
  • Γραμμικός μετασχηματισμός
  • Linear map
  • Lineara bildigo
  • Aplicación lineal
  • Aplikazio lineal
  • Application linéaire
  • Trasformazione lineare
  • 線型写像
  • 선형 변환
  • Lineaire afbeelding
  • Przekształcenie liniowe
  • Transformação linear
  • Линейное отображение
  • Linjär avbildning
  • Лінійне відображення
  • 线性映射
rdfs:comment
  • في الرياضيات, التحويل الخطي أو التطبيق الخطي (بالإنجليزية: Linear operator) هو مصطلح يستخدم في الجبر الخطي. وهو يشير إلى خريطة المسافات بين ناقلات الطرفين على نفس الهيئة التي لا يهم ما إذا كان يتم إضافة متجهين معا أولا وبعد ذلك ترسيم المجموع بواسطة الدالة، أو موجهات وثم تحديد مجموع الصور. الشيء نفسه ينطبق على الضرب من قبل العددية (مثلا عدد حقيقي). المثال المصور أعلاه يوضح الانعكاس عبر المحور y. الناقل c هو مجموع ناقلات a و b وصورته أي الناقل `c وهذا يعطي `c ، أيضا عند إضافة الصور a و b للناقلات `a و`b.
  • En matemàtiques, una aplicació lineal és un morfisme entre dos espais vectorials que respecta l'operació suma de vectors i la multiplicació escalar definides en aquests espais vectorials, o, en altres paraules que preserven les combinacions lineals.
  • Έστω και διανυσματικοί χώροι επί του σώματος . Μια απεικόνιση με ονομάζεται γραμμικός μετασχηματισμός όταν για κάθε και ισχύουν οι σχέσεις και Οι παραπάνω σχέσεις ονομάζονται σχέσεις γραμμικότητας. Οι σχέσεις αυτές είναι ισοδύναμες με την σχέση για κάθε και , η οποία μπορεί να χρησιμοποιηθεί ως ένας εναλλακτικός ορισμός της έννοιας του γραμμικού μετασχηματισμού. Η παραπάνω σχέση μπορεί να γενικευθεί για διανύσματα με και Αν οι διανυσματικοί χώροι και ταυτίζονται, τότε ο μετασχηματισμός ονομάζεται γραμμικός τελεστής
  • En matematiko, lineara bildigo aŭ lineara transformo estas funkcio inter du vektoraj spacoj, kiu konservas operaciojn de vektora adicio kaj skalara multipliko. Alivorte, ĝi konservas linearajn kombinaĵojn. En la lingvo de abstrakta algebro, lineara bildigo estas de vektoraj spacoj.
  • En matemáticas una aplicación lineal, es una aplicación entre dos espacios vectoriales, que preserva las operaciones de adición de vectores y multiplicación por un escalar. En álgebra abstracta, álgebra lineal y análisis funcional una aplicación lineal es un homomorfismo entre espacios vectoriales; que en el lenguaje de la teoría de categorías es un morfismo sobre la categoría de los espacios vectoriales que actúa un cuerpo dado.
  • Matematiketan aplikazio lineal bat aplikazio bat da bi bektore-espazioren artean, honek eransketa eta biderketak operazio bektore eskalar bezala mantentzen ditu. Aljebra abstraktuan eta aljebra linealean aplikazio lineal bat, homomorfismoa da bektore-espazioen artean edo kategorietako teoriako hizkuntzan morfismo bat bektore-espazioen kategorian emandako gorputz baten gainetik.
  • En mathématiques, une application linéaire (aussi appelée opérateur linéaire ou transformation linéaire) est une application entre deux espaces vectoriels sur un corps K (ou entre deux modules sur un anneau A) qui respecte l'addition des vecteurs et la multiplication scalaire définies dans ces espaces vectoriels ou modules. De façon intuitive, une application linéaire « préserve les combinaisons linéaires ».
  • 선형대수학에서, 선형 변환(線型變換, 영어: linear transformation) 또는 선형 사상(線型寫像, 영어: linear map) 또는 선형 연산자(線型演算子, 영어: linear operator) 또는 선형 작용소(線型作用素)는 선형 결합을 보존하는, 두 벡터 공간 사이의 함수이다.
  • 数学の特に線型代数学における線型変換(せんけいへんかん、英: linear transformation、一次変換)あるいは線型写像(せんけいしゃぞう、英: linear mapping)は、とを保つ特別の写像である。特に任意の(零写像でない)線型写像は「直線を直線に移す」。 抽象代数学の言葉を用いれば、線型写像とは(体上の加群としての)ベクトル空間の構造を保つ準同型のことであり、また一つの固定された体上のベクトル空間の全体は線型写像を射とする圏を成す。 「線型変換」は線型写像とまったく同義と扱われる場合もあるが、始域と終域を同じくする線型写像(自己準同型)の意味で用いていることも少なくない。また函数解析学の分野では、(特に無限次元空間上の)線型写像のことを「線型作用素」(せんけいさようそ、英: linear operator)と呼ぶことも多い。の線型写像はしばしば「線型汎函数」もしくは「一次形式」(いちじけいしき、英: linear form, one-form; 線型形式; 1-形式)とも呼ばれる。 線形等の用字・表記の揺れについては線型性を参照。
  • In de wiskunde is een lineaire afbeelding ruwweg een afbeelding die de lineaire combinaties bewaart, wat inhoudt dat zowel de optelling als de scalaire vermenigvuldiging behouden blijven. Het beeld van de som van vectoren is gelijk aan de som van de beelden, en het beeld van een (scalaire) veelvoud van een vector is gelijk aan hetzelfde veelvoud van het beeld. Deze afbeeldingen vertonen interessante eigenschappen en spelen een belangrijke rol in de lineaire algebra van vectorruimten en modulen.
  • Em Matemática, uma transformação linear é um tipo particular de função entre dois espaços vetoriais que preserva as operações de adição vetorial e multiplicação por escalar. Uma transformação linear também pode ser chamada de aplicação linear ou mapa linear. No caso em que o domínio e contradomínio coincidem, é usada a expressão operador linear. Na linguagem da álgebra abstrata, uma transformação linear é um homomorfismo de espaços vetoriais.
  • Лине́йное отображе́ние — обобщение линейной числовой функции (точнее, функции ) на случай более общего множества аргументов и значений. Линейные отображения, в отличие от , достаточно хорошо исследованы, что позволяет успешно применять результаты общей теории, так как их свойства не зависят от природы величин. Линейный оператор (преобразование) является частным случаем линейного отображения векторного пространства в себя.
  • Inom matematiken är en linjär avbildning (även kallad linjär transformation och linjär operation) en särskild sorts avbildning mellan två vektorrum.
  • 在数学中,线性映射(有的书上将“线性变换”作为其同义词,有的则不然)是在两个向量空间(包括由函数构成的抽象的向量空间)之间的一种保持向量加法和标量乘法的特殊映射。线性映射从抽象代数角度看是向量空间的同态,从范畴论角度看是在给定的域上的向量空间所构成的范畴中的态射。 “线性算子”也是与“线性映射”有关的概念。但是不同数学书籍上对“线性算子”的定义存在区别。在泛函分析中,“线性算子”一般被当做“线性映射”的同义词。而有的书则将“线性算子”定义为“线性映射”的自同态子类(详见下文)。为叙述方便,本条目在提及“线性算子”时,采用后一种定义,即将线性算子与线性映射区别开来。
  • Pojmem lineární zobrazení (někdy též lineární transformace, angl. linear map, linear mapping, popř. linear transformation) se v matematice označuje takové zobrazení mezi vektorovými prostory X a Y, které zachovává vektorové operace sčítání a násobení skalárem. Název lineární je odvozen z faktu, že grafem lineárního zobrazení z reálných čísel do reálných čísel je přímka, latinsky linea.
  • Eine lineare Abbildung (auch lineare Transformation oder Vektorraumhomomorphismus genannt) ist in der linearen Algebra ein wichtiger Typ von Abbildung zwischen zwei Vektorräumen über demselben Körper. Bei einer linearen Abbildung ist es unerheblich, ob man zwei Vektoren zuerst addiert und dann deren Summe abbildet oder zuerst die Vektoren abbildet und dann die Summe der Bilder bildet. Gleiches gilt für die Multiplikation mit einem Skalar aus dem Grundkörper.
  • In mathematics, a linear map (also called a linear mapping, linear transformation or, in some contexts, linear function) is a mapping V → W between two modules (for example, two vector spaces) that preserves (in the sense defined below) the operations of addition and scalar multiplication. If a linear map is a bijection then it is called a linear isomorphism. In the language of abstract algebra, a linear map is a module homomorphism. In the language of category theory, it is a morphism in the category of modules over a given ring.
  • In matematica, più precisamente in algebra lineare, una trasformazione lineare, detta anche applicazione lineare o mappa lineare, è una funzione lineare tra due spazi vettoriali sullo stesso campo, cioè una funzione che conserva le operazioni di somma di vettori e di moltiplicazione per uno scalare. In altre parole, una trasformazione lineare preserva le combinazioni lineari. Nel linguaggio dell'algebra astratta, una trasformazione lineare è un omomorfismo di spazi vettoriali, in quanto conserva le operazioni che caratterizzano gli spazi vettoriali.
  • Przekształcenie liniowe (operator liniowy, odwzorowanie liniowe, transformacja liniowa) – w algebrze liniowej jest to funkcja między przestrzeniami liniowymi zachowująca ich działania w tym sensie, że (dokładna definicja – patrz niżej): * odwzorowanie sumy wektorów z jednej przestrzeni w drugą jest równe sumie odwzorowań poszczególnych wektorów tej sumy, * odwzorowanie iloczynu wektora przez skalar jest równe iloczynowi skalara przez odwzorowanie danego wektora. Przekształcenie liniowe jest więc homomorfizmem przestrzeni liniowych. Uwaga:
  • Лінійним відображенням (лінійним оператором, лінійним перетворенням) — називається відображення векторного простору над полем в векторний простір (над тим же полем ) що має властивість лінійності: Лінійне відображення зберігає операції додавання векторів і множення вектора на скаляр: адитивність однорідність Лінійне відображення векторних просторів є їх гомоморфізмом. А у випадку бієктивності відображення то і ізоморфізмом. Лінійне відображення — найважливіше поняття лінійної алгебри, завдяки якому вона отримала свою назву.
differentFrom
foaf:isPrimaryTopicOf
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git51 as of Sep 16 2020


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3319 as of Dec 29 2020, on Linux (x86_64-centos_6-linux-glibc2.12), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2021 OpenLink Software