About: Light-front computational methods     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FLight-front_computational_methods

The light front quantization of quantum field theories provides a useful alternative to ordinary equal-time quantization. In particular, it can lead to a relativistic description of bound systems in terms of quantum-mechanical wave functions. The quantization is based on the choice of light-front coordinates, where plays the role of time and the corresponding spatial coordinate is . Here, is the ordinary time, is one Cartesian coordinate, and is the speed of light. The other two Cartesian coordinates, and , are untouched and often called transverse or perpendicular, denoted by symbols of the type . The choice of the frame of reference where the time and -axis are defined can be left unspecified in an exactly soluble relativistic theory, but in practical calculations some choices may

AttributesValues
rdfs:label
  • Light-front computational methods
rdfs:comment
  • The light front quantization of quantum field theories provides a useful alternative to ordinary equal-time quantization. In particular, it can lead to a relativistic description of bound systems in terms of quantum-mechanical wave functions. The quantization is based on the choice of light-front coordinates, where plays the role of time and the corresponding spatial coordinate is . Here, is the ordinary time, is one Cartesian coordinate, and is the speed of light. The other two Cartesian coordinates, and , are untouched and often called transverse or perpendicular, denoted by symbols of the type . The choice of the frame of reference where the time and -axis are defined can be left unspecified in an exactly soluble relativistic theory, but in practical calculations some choices may
foaf:depiction
  • External Image
foaf:isPrimaryTopicOf
thumbnail
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • The light front quantization of quantum field theories provides a useful alternative to ordinary equal-time quantization. In particular, it can lead to a relativistic description of bound systems in terms of quantum-mechanical wave functions. The quantization is based on the choice of light-front coordinates, where plays the role of time and the corresponding spatial coordinate is . Here, is the ordinary time, is one Cartesian coordinate, and is the speed of light. The other two Cartesian coordinates, and , are untouched and often called transverse or perpendicular, denoted by symbols of the type . The choice of the frame of reference where the time and -axis are defined can be left unspecified in an exactly soluble relativistic theory, but in practical calculations some choices may be more suitable than others. The solution of the LFQCD Hamiltonian eigenvalue equation will utilize the available mathematical methods of quantum mechanics and contribute to the development of advanced computing techniques for large quantum systems, including nuclei. For example, in the discretized light-cone quantization method (DLCQ), periodic conditions are introduced such that momenta are discretized and the size of the Fock space is limited without destroying Lorentz invariance. Solving a quantum field theory is then reduced to diagonalizing a large sparse Hermitian matrix. The DLCQ method has been successfully used to obtain the complete spectrum and light-front wave functions in numerous model quantum field theories such as QCD with one or two space dimensions for any number of flavors and quark masses. An extension of this method to supersymmetric theories, SDLCQ, takes advantage of the fact that the light-front Hamiltonian can be factorized as a product of raising and lowering ladder operators. SDLCQ has provided new insights into a number of supersymmetric theories including direct numerical evidence for a supergravity/super-Yang—Mills duality conjectured by Maldacena. It is convenient to work in a Fock basis where the light-front momenta and are diagonal. The state is given by an expansion with is interpreted as the wave function of the contribution from states with particles. The eigenvalue problem is a set of coupled integral equations for these wave functions. Although the notation as presented supports only one particle type, the generalization to more than one is trivial.
prov:wasDerivedFrom
page length (characters) of wiki page
is foaf:primaryTopic of
is Link from a Wikipage to another Wikipage of
Faceted Search & Find service v1.17_git51 as of Sep 16 2020


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3319 as of Dec 29 2020, on Linux (x86_64-centos_6-linux-glibc2.12), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2021 OpenLink Software