About: Knot (mathematics)     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Knot107960384, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FKnot_%28mathematics%29

In mathematics, a knot is an embedding of a topological circle S1 in 3-dimensional Euclidean space, R3 (also known as E3), considered up to continuous deformations (isotopies). A crucial difference between the standard mathematical and conventional notions of a knot is that mathematical knots are closed—there are no ends to tie or untie on a mathematical knot. Physical properties such as friction and thickness also do not apply, although there are mathematical definitions of a knot that take such properties into account. The term knot is also applied to embeddings of S j in Sn, especially in the case j = n − 2. The branch of mathematics that studies knots is known as knot theory, and has many simple relations to graph theory.

AttributesValues
rdf:type
rdfs:label
  • Nus (matemàtiques)
  • Knoten (Topologie)
  • Knot (mathematics)
  • Nudo (matemática)
  • Nœud (mathématiques)
  • Nodo (matematica)
  • 結び目 (数学)
  • 매듭 (수학)
  • Knoop (wiskunde)
  • Węzeł (teoria węzłów)
  • Nó (matemática)
  • Узел (математика)
  • Вузол (математика)
rdfs:comment
  • In mathematics, a knot is an embedding of a topological circle S1 in 3-dimensional Euclidean space, R3 (also known as E3), considered up to continuous deformations (isotopies). A crucial difference between the standard mathematical and conventional notions of a knot is that mathematical knots are closed—there are no ends to tie or untie on a mathematical knot. Physical properties such as friction and thickness also do not apply, although there are mathematical definitions of a knot that take such properties into account. The term knot is also applied to embeddings of S j in Sn, especially in the case j = n − 2. The branch of mathematics that studies knots is known as knot theory, and has many simple relations to graph theory.
  • En matemáticas, y más concretamente en topología, un nudo es una clase de equivalencia de encajes de la circunferencia ( S1= {x ε R2 : |x|=1 } ) en R3 o en la tres esfera S3.
  • En mathématiques, et plus particulièrement en géométrie et en topologie algébrique, un nœud est un plongement d'un cercle dans ℝ3, l'espace euclidien de dimension 3, considéré à des déformations continues près. Une différence essentielle entre les nœuds usuels et les nœuds mathématiques est que ces derniers sont fermés (sans extrémités permettant de les nouer ou de les dénouer) ; les propriétés physiques des nœuds réels, telles que la friction ou l'épaisseur des cordes, sont généralement également négligées. Plus généralement, on parle aussi de nœud pour des plongements de dans , tout particulièrement dans le cas . L'étude des nœuds mathématiques s'appelle la théorie des nœuds.
  • 数学の特に低次元位相幾何学における結び目(むすびめ、英: knot; 結び糸)は、円周 S1 の三次元ユークリッド空間 E3 への埋め込みを、適当なホモトピーの違いを除いて考えるものである。このような数学における標準的な結び目の概念と、日常的な概念としての結び目との間の著しい違いは、数学的な結び目は閉曲線—つまり、結んだり解いたりするための「端」が存在しない—となっている点である。また、数学的な結び目に摩擦や厚みと言った物理学的性質も持っていない(そのような性質を勘案した結び目の数学的定義が無いわけではないが)。また、より高次化した Sj の Sn への埋め込み—特に、j = n − 2 のとき—をも「結び目」と呼ぶことがある。結び目を研究する数学の分野は結び目理論と呼ばれ、グラフ理論にも多くの単純な関係がある。
  • 매듭 이론에서 매듭이란 원을 3차원 유클리드 공간 R3에 매장한 것을 말한다. 일상적인 의미의 '매듭'은 대체로 긴 줄을 꼬아 묶은 것을 말하는데, 수학적인 매듭은 이 줄의 양쪽 끝을 붙인 것이다. 한 매듭을 R3 안에서 중간을 자르지 않고 조금씩 움직여서 다른 매듭으로 만들 수 있으면 두 매듭이 '동등하다'고 한다.
  • Em matemática, um nó é uma inserção de um círculo no espaço euclidiano tridimensional, R³ (também conhecido como E³), considerado até deformações contínuas (isotopias). Uma diferença crucial entre as noções padrão matemática e convencional de um nó é que nós matemáticos são fechados - não há fins para amarrar ou desatar em um nó matemático. Propriedades físicas, como atrito e espessura também não se aplicam, embora existam definições matemáticas de um nó que levam essas propriedades em consideração. O termo nó também é aplicado a Incorporação de em , especialmente no caso . O ramo da matemática que estuda nós é conhecido como teoria do nó, e tem muitas relações simples para a teoria dos grafos.
  • En matemàtiques (i especialment en topologia), un nus és una incrustació de la circumferència en l'espai ambient (, o alguna altra 3-varietat), generalment considerant la topologia euclidiana. El que pretén la definició matemàtica de nus és donar una descripció rigorosa del concepte comú de nus i amb això poder donar resposta a què fa que un nus sigui diferent d'un altre. La idea bàsica d'aquesta definició és que, per donar-li cabuda al fet que un nus no es pugui desnuar, s'enganxen les puntes extremes del nus.
  • In matematica, e più precisamente in topologia, un nodo è una curva semplice chiusa nello spazio tridimensionale. Questo oggetto matematico modellizza un nodo di corda molto fine, i cui estremi sono stati incollati. La branca della topologia che studia i nodi è la teoria dei nodi. Tale teoria ha applicazioni in fisica, chimica e biologia.
  • In de knopentheorie, een deelgebied van de topologie, is een knoop de wiskundige beschrijving van een rondgaande lijn (touw) die een of meer keren om zichzelf heen gedraaid is. Ook het randgeval dat de lijn niet om zichzelf gedraaid is, wordt als knoop, de triviale knoop, opgevat. Formeel is een knoop een continue vervorming (isotopie) van een cirkel die ingebed is in de driedimensionale euclidische ruimte . De cirkel zelf is de triviale knoop, met kruisingsgetal nul. Er zijn belangrijke verschillen tussen het wiskundige begrip knoop en de alledaagse knoop in een touw:
  • Węzeł (ang. knot) – dowolna krzywa zanurzona w R3. Dwa węzły i są równoważne, jeśli istnieje homeomorfizm przestrzeni na siebie, przekształcający jeden węzeł w drugi, tj. istnieje taki homeomorfizm że . Rozważany wyżej homeomorfizm należy odróżnić od homeomorfizmu między węzłami. Każdy węzeł, jako krzywa zwykła zamknięta, jest homeomorficzny z okręgiem, a przez to z każdym innym węzłem. Własność zawęźlenia nie jest więc wewnętrzną własnością węzła, ale charakteryzuje sposób, w jaki krzywa ta leży w przestrzeni trójwymiarowej.
  • Узел в математике — вложение окружности (одномерной сферы) в трёхмерное евклидово пространство, рассматриваемое с точностью до изотопии. Основной предмет изучения теории узлов. Два узла топологически эквивалентны, если один из них можно продеформировать в другой, причём в процессе деформации не должно возникать самопересечений. Частным случаем является вопрос о распознавании тривиальности того или иного узла, то есть о том, является ли заданный узел изотопным тривиальному узлу (можно ли его развязать).
  • Вузол у математиці — вкладення кола (двовимірної сфери) в тривимірний евклідів простір, розглянуте з точністю до ізотопії. Основний предмет вивчення теорії вузлів. Два вузли топологічно еквівалентні, якщо один з них можна деформувати в інший, причому в процесі деформації не повинно виникати самоперетинів. Частковим випадком є питання про розпізнавання тривіальності того чи іншого вузла, тобто про те, чи є заданий вузол ізотопним тривіальному вузлу (чи можна його розв'язати).
foaf:depiction
  • External Image
foaf:isPrimaryTopicOf
thumbnail
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git51 as of Sep 16 2020


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3319 as of Dec 29 2020, on Linux (x86_64-centos_6-linux-glibc2.12), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2021 OpenLink Software