About: Join and meet     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FJoin_and_meet

In mathematics, specifically order theory, the join and meet of a subset S of a partially ordered set P are respectively the supremum (least upper bound) of S, denoted ⋁S, and infimum (greatest lower bound) of S, denoted ⋀S. In general, the join and meet of a subset of a partially ordered set need not exist. Join and meet are dual to one another with respect to order inversion. The join/meet of a subset of a totally ordered set is simply its maximal/minimal element, if such an element exists.

AttributesValues
rdfs:label
  • Join and meet
  • 結びと交わり
  • 交运算
rdfs:comment
  • 半順序集合 P において、部分集合 S の結び (join) と交わり (meet) はそれぞれ S の上限(最小上界)⋁S と S の下限(最大下界)⋀S である。一般に、半順序集合の部分集合の結びや交わりは存在するとは限らない;存在するときには、それらは P の元である。 結びと交わりは P の元の対上の可換結合的冪等部分二項演算として定義することもできる。a と b が P の元であるとき、結びは a ∨ b と書かれ、交わりは a ∧ b と書かれる。 結びと交わりは順序の反転に関して対称である。全順序集合の部分集合の結び/交わりは単にその極大/極小元である。 すべての対が結びを持つような半順序集合は である。双対的に、すべての対が交わりを持つような半順序集合は である。join-semilattice でも meet-semilattice でもあるような半順序集合は束である。単にすべての対ではなくすべての部分集合が結びと交わりを持つような束は完備束である。すべての対が結びや交わりをもつわけではないがその演算が(定義されるときに)ある公理を満たすような を定義することもできる。
  • 在数学中,在一个集合上的交(meet)有两种定义:关于在这个集合上的偏序的唯一下确界(最大下界),假定下确界存在的话; 或者是满足幂等律的交换结合二元运算。在任何一个情况下,这个集合与交运算一起是半格。这两个定义产生等价的结果,除了在偏序方式中有可能直接定义更一般的元素的集合的交。最常见到交运算的领域是格。 通常把 和 的交指示为 。
  • In mathematics, specifically order theory, the join and meet of a subset S of a partially ordered set P are respectively the supremum (least upper bound) of S, denoted ⋁S, and infimum (greatest lower bound) of S, denoted ⋀S. In general, the join and meet of a subset of a partially ordered set need not exist. Join and meet are dual to one another with respect to order inversion. The join/meet of a subset of a totally ordered set is simply its maximal/minimal element, if such an element exists.
foaf:depiction
  • External Image
foaf:isPrimaryTopicOf
thumbnail
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • In mathematics, specifically order theory, the join and meet of a subset S of a partially ordered set P are respectively the supremum (least upper bound) of S, denoted ⋁S, and infimum (greatest lower bound) of S, denoted ⋀S. In general, the join and meet of a subset of a partially ordered set need not exist. Join and meet are dual to one another with respect to order inversion. A partially ordered set in which all pairs have a join is a join-semilattice. Dually, a partially ordered set in which all pairs have a meet is a meet-semilattice. A partially ordered set that is both a join-semilattice and a meet-semilattice is a lattice. A lattice in which every subset, not just every pair, possesses a meet and a join is a complete lattice. It is also possible to define a partial lattice, in which not all pairs have a meet or join but the operations (when defined) satisfy certain axioms. The join/meet of a subset of a totally ordered set is simply its maximal/minimal element, if such an element exists. If a subset S of a partially ordered set P is also an (upward) directed set, then its join (if it exists) is called a directed join or directed supremum. Dually, if S is a downward directed set, then its meet (if it exists) is a directed meet or directed infimum.
  • 半順序集合 P において、部分集合 S の結び (join) と交わり (meet) はそれぞれ S の上限(最小上界)⋁S と S の下限(最大下界)⋀S である。一般に、半順序集合の部分集合の結びや交わりは存在するとは限らない;存在するときには、それらは P の元である。 結びと交わりは P の元の対上の可換結合的冪等部分二項演算として定義することもできる。a と b が P の元であるとき、結びは a ∨ b と書かれ、交わりは a ∧ b と書かれる。 結びと交わりは順序の反転に関して対称である。全順序集合の部分集合の結び/交わりは単にその極大/極小元である。 すべての対が結びを持つような半順序集合は である。双対的に、すべての対が交わりを持つような半順序集合は である。join-semilattice でも meet-semilattice でもあるような半順序集合は束である。単にすべての対ではなくすべての部分集合が結びと交わりを持つような束は完備束である。すべての対が結びや交わりをもつわけではないがその演算が(定義されるときに)ある公理を満たすような を定義することもできる。
  • 在数学中,在一个集合上的交(meet)有两种定义:关于在这个集合上的偏序的唯一下确界(最大下界),假定下确界存在的话; 或者是满足幂等律的交换结合二元运算。在任何一个情况下,这个集合与交运算一起是半格。这两个定义产生等价的结果,除了在偏序方式中有可能直接定义更一般的元素的集合的交。最常见到交运算的领域是格。 通常把 和 的交指示为 。
prov:wasDerivedFrom
page length (characters) of wiki page
is foaf:primaryTopic of
is Link from a Wikipage to another Wikipage of
Faceted Search & Find service v1.17_git51 as of Sep 16 2020


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3319 as of Dec 29 2020, on Linux (x86_64-centos_6-linux-glibc2.12), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2021 OpenLink Software