An Entity of Type : owl:Thing, within Data Space : dbpedia.org associated with source document(s)

In plane geometry, a Jacobi point is a point in the Euclidean plane determined by a triangle ABC and a triple of angles α, β, and γ. This information is sufficient to determine three points X, Y, and Z such that ∠ZAB = ∠YAC = α, ∠XBC = ∠ZBA = β, and ∠YCA = ∠XCB = γ. Then, by a theorem of , the lines AX, BY, and CZ are concurrent, at a point N called the Jacobi point. The Jacobi point is a generalization of the Fermat point, which is obtained by letting α = β = γ = 60° and triangle ABC having no angle being greater or equal to 120°.

AttributesValues
rdfs:label
• Jacobi's theorem (geometry)
rdfs:comment
• In plane geometry, a Jacobi point is a point in the Euclidean plane determined by a triangle ABC and a triple of angles α, β, and γ. This information is sufficient to determine three points X, Y, and Z such that ∠ZAB = ∠YAC = α, ∠XBC = ∠ZBA = β, and ∠YCA = ∠XCB = γ. Then, by a theorem of , the lines AX, BY, and CZ are concurrent, at a point N called the Jacobi point. The Jacobi point is a generalization of the Fermat point, which is obtained by letting α = β = γ = 60° and triangle ABC having no angle being greater or equal to 120°.
foaf:isPrimaryTopicOf
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
• In plane geometry, a Jacobi point is a point in the Euclidean plane determined by a triangle ABC and a triple of angles α, β, and γ. This information is sufficient to determine three points X, Y, and Z such that ∠ZAB = ∠YAC = α, ∠XBC = ∠ZBA = β, and ∠YCA = ∠XCB = γ. Then, by a theorem of , the lines AX, BY, and CZ are concurrent, at a point N called the Jacobi point. The Jacobi point is a generalization of the Fermat point, which is obtained by letting α = β = γ = 60° and triangle ABC having no angle being greater or equal to 120°. If the three angles above are equal, then N lies on the rectangular hyperbola given in areal coordinates by which is Kiepert's hyperbola. Each choice of three equal angles determines a triangle center.
prov:wasDerivedFrom
page length (characters) of wiki page
is foaf:primaryTopic of
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
Faceted Search & Find service v1.17_git51 as of Sep 16 2020

Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About

OpenLink Virtuoso version 08.03.3319 as of Dec 29 2020, on Linux (x86_64-centos_6-linux-glibc2.12), Single-Server Edition (61 GB total memory)