About: Hypotrochoid     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Line113863771, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FHypotrochoid

A hypotrochoid is a roulette traced by a point attached to a circle of radius r rolling around the inside of a fixed circle of radius R, where the point is a distance d from the center of the interior circle. The parametric equations for a hypotrochoid are: where is the angle formed by the horizontal and the center of the rolling circle (these are not polar equations because is not the polar angle). When measured in radian, takes values from to where LCM is least common multiple. The classic Spirograph toy traces out hypotrochoid and epitrochoid curves.

AttributesValues
rdf:type
rdfs:label
  • منحنى عجلي تحتي
  • Hipotrocoide
  • Hypotrochoida
  • Hypotrochoid
  • Hipotrocoide
  • Hipotrokoide
  • Hypotrochoïde
  • Ipotrocoide
  • Hypotrochoïde
  • Hipotrochoida
  • Hipotrocoide
  • Гипотрохоида
  • Гіпотрохоїда
  • 内旋轮线
rdfs:comment
  • المنحنى العجلي التحتي أو التروكويد التحتي (بالإنجليزية: Hypotrochoid) هو منحنى ، تولده نقطة واقعة على المستقيم المار بمركز دائرة نصف قطرها r تتدحرج دون انزلاق داخل دائرة أخرى ثابتة نصف قطرها R، بحيث تكون d هي المسافة بين النقطة ومركز الدائرة الداخلية. المعادلتان البارامتريتان للمنحنى العجلي التحتي هما:المعادلة القطبية للعجلي التحتي هي: هناك حالتان خاصتان للعجلي التحتي وهما: 1. * عندما d = r نحصل على دويري تحتي 2. * عندما R = 2r نحصل على قطع ناقص
  • Una hipotrocoide , a geometria, és la corba plana que descriu un punt vinculat a una circumferència generatriu que roda dins d'una circumferència directriu, tangencialment, sense lliscament. La paraula es compon de les arrels gregues singlot hupo (baix) i trokos (roda). Aquestes corbes van ser estudiades per Albrecht Dürer en 1525, Ole Christensen Rømer el 1674 i Johann Bernoulli el 1725.
  • Hypotrochoida je křivka, kterou opisuje bod, spojený s kružnicí, odvalující se po vnitřku jiné, větší kružnice.
  • Una hipotrocoide, en geometría, es la curva plana que describe un punto vinculado a una circunferencia generatriz que rueda dentro de una circunferencia directriz, tangencialmente, sin deslizamiento. La palabra se compone de las raíces griegas hipo hupo (abajo) y trokos (rueda). Estas curvas fueron estudiadas por Albrecht Dürer en 1525, Ole Christensen Rømer en 1674 y Bernoulli en 1725.
  • En géométrie, les hypotrochoïdes sont des courbes planes décrites par un point lié à un cercle mobile (C) roulant sans glisser sur et intérieurement à un cercle de base (C0), le cercle roulant étant plus petit que le fixe. Ces courbes ont été étudiées par Albrecht Dürer en 1525, Ole Christensen Rømer en 1674 et Jean Bernoulli en 1725 : Le mot se compose des racines grecques hupo (au-dessous) et trokhos (la roue). Lorsque le cercle roule à l'extérieur, on a affaire à une épitrochoïde.
  • De hypotrochoïde is een wiskundige planaire kromme die ontstaat door een kleine cirkel met straal r te laten wentelen in een grote cirkel met straal R en waarbij d de afstand is van het middelpunt van de kleine cirkel tot ieder punt op de kromme. Deze afstand d kan zowel kleiner als groter zijn dan r. Indien d = r, dan spreekt men van een hypocycloïde.
  • Hipotrochoida – krzywa zakreślona przez punkt leżący w stałej odległości od środka koła toczącego się po wewnętrznej stronie nieruchomego okręgu.
  • Гипотрохоида — плоская кривая, образуемая фиксированной точкой, находящейся на фиксированной радиальной прямой окружности, катящейся по внутренней стороне другой окружности.
  • A hipotrocoide é uma rolete traçada por um ponto fixo de um círculo de raio r que rola dentro de um círculo de raio R fixo, onde o ponto está a uma distância d do centro ao círculo interno. As equações paramétricas para a hipotrocoide são: A equação polar para a hipotrocoide é: Casos especiais de hipotrocoides incluem a hipocicloide com d = r e a elipse com R = 2r. O brinquedo clássico espirógrafo produz as curvas hipotrocoide e epitrocoide.
  • 内旋轮线(英語:hypotrochoid)是追踪附着在围绕半径为 R 的固定的圆内侧滚转的半径为 r 的圆上的一个点得到的,这个点到内部滚动的圆的中心的距离是 d。 内旋轮线的参数方程是: 特殊情况包括 d = r 的内摆线和 R = 2r 的椭圆。 经典的玩具萬花尺追踪出内旋轮线和外旋轮线。
  • Гіпотрохоїда — плоска крива, утворена фіксованою точкою, що знаходиться на фіксованій радіальній прямій кола, що котиться по внутрішній стороні іншого кола.
  • A hypotrochoid is a roulette traced by a point attached to a circle of radius r rolling around the inside of a fixed circle of radius R, where the point is a distance d from the center of the interior circle. The parametric equations for a hypotrochoid are: where is the angle formed by the horizontal and the center of the rolling circle (these are not polar equations because is not the polar angle). When measured in radian, takes values from to where LCM is least common multiple. The classic Spirograph toy traces out hypotrochoid and epitrochoid curves.
  • Geometrian, hipotrokoidea kurba bat da, zirkunferentzia bat (sortzailea) beste zirkunferentzia baten barruan (gidatzailea), ukituz eta irristatu gabe, biratzen denean, berari lotutako P puntu batek jarraitzen duen bideak ematen duena. Hipotrokoide hitza hipo hupo (behean) eta trokos (gurpila) grezierazko erroek osatuta. Kurba mota hauek Albrecht Dürerrek 1525ean, Ole Christensen Rømerrek 1674an eta Bernoullik 1725ean ikasi zituzten. Hipotrokoidea : angelua 0-tik 2π-ra joaten da. Elipsea hipotrokoidearen kasu berezia da, non den.
  • In geometria, un'ipotrocoide è una rulletta ottenibile come curva tracciata da un punto fissato ad un cerchio c di raggio r e posto ad una distanza d dal centro (del cerchio c): quando c ruota all'interno di un cerchio più grande, di raggio R, traccia l'ipotrocoide. Un'ipotrocoide si può individuare con il seguente sistema di equazioni parametriche: . L'equazione polare di un'ipotrocoide è Tra i casi speciali di ipotrocoide vi sono l'ipocicloide, relativa a d = r, e l'ellisse, ottenuta quando R = 2r.
foaf:depiction
  • External Image
foaf:isPrimaryTopicOf
thumbnail
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
class
  • Curves
id
  • Hypotrochoid
title
  • Hypotrochoid
has abstract
  • المنحنى العجلي التحتي أو التروكويد التحتي (بالإنجليزية: Hypotrochoid) هو منحنى ، تولده نقطة واقعة على المستقيم المار بمركز دائرة نصف قطرها r تتدحرج دون انزلاق داخل دائرة أخرى ثابتة نصف قطرها R، بحيث تكون d هي المسافة بين النقطة ومركز الدائرة الداخلية. المعادلتان البارامتريتان للمنحنى العجلي التحتي هما:المعادلة القطبية للعجلي التحتي هي: هناك حالتان خاصتان للعجلي التحتي وهما: 1. * عندما d = r نحصل على دويري تحتي 2. * عندما R = 2r نحصل على قطع ناقص
  • Una hipotrocoide , a geometria, és la corba plana que descriu un punt vinculat a una circumferència generatriu que roda dins d'una circumferència directriu, tangencialment, sense lliscament. La paraula es compon de les arrels gregues singlot hupo (baix) i trokos (roda). Aquestes corbes van ser estudiades per Albrecht Dürer en 1525, Ole Christensen Rømer el 1674 i Johann Bernoulli el 1725.
  • Hypotrochoida je křivka, kterou opisuje bod, spojený s kružnicí, odvalující se po vnitřku jiné, větší kružnice.
  • Una hipotrocoide, en geometría, es la curva plana que describe un punto vinculado a una circunferencia generatriz que rueda dentro de una circunferencia directriz, tangencialmente, sin deslizamiento. La palabra se compone de las raíces griegas hipo hupo (abajo) y trokos (rueda). Estas curvas fueron estudiadas por Albrecht Dürer en 1525, Ole Christensen Rømer en 1674 y Bernoulli en 1725.
  • A hypotrochoid is a roulette traced by a point attached to a circle of radius r rolling around the inside of a fixed circle of radius R, where the point is a distance d from the center of the interior circle. The parametric equations for a hypotrochoid are: where is the angle formed by the horizontal and the center of the rolling circle (these are not polar equations because is not the polar angle). When measured in radian, takes values from to where LCM is least common multiple. Special cases include the hypocycloid with d = r is a line or flat ellipse and the ellipse with R = 2r and d > r or d < r (d is not equal to r). (see Tusi couple). The classic Spirograph toy traces out hypotrochoid and epitrochoid curves.
  • Geometrian, hipotrokoidea kurba bat da, zirkunferentzia bat (sortzailea) beste zirkunferentzia baten barruan (gidatzailea), ukituz eta irristatu gabe, biratzen denean, berari lotutako P puntu batek jarraitzen duen bideak ematen duena. Hipotrokoide hitza hipo hupo (behean) eta trokos (gurpila) grezierazko erroek osatuta. Kurba mota hauek Albrecht Dürerrek 1525ean, Ole Christensen Rømerrek 1674an eta Bernoullik 1725ean ikasi zituzten. Hipotrokoidea : non eta zirkunferentzia sortzaileko zentroak sortutako angelua (ohartu hauek ez direla angelu polarra ez delako), zirkunferentzia gidatzaileko erradioa, zirkunferentzia sortzaileko erradioa eta P puntuaren zentroarekiko distantzia diren. angelua 0-tik 2π-ra joaten da. Elipsea hipotrokoidearen kasu berezia da, non den. Hipozikloidea beste kasu berezia da, non (zirkunferentzia sortzaileko puntu finkoa)
Faceted Search & Find service v1.17_git51 as of Sep 16 2020


Alternative Linked Data Documents: PivotViewer | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3319 as of Dec 29 2020, on Linux (x86_64-centos_6-linux-glibc2.12), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2021 OpenLink Software