About: Hall?Littlewood polynomials     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:WikicatOrthogonalPolynomials, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FHall%E2%80%93Littlewood_polynomials

In mathematics, the Hall–Littlewood polynomials are symmetric functions depending on a parameter t and a partition λ. They are Schur functions when t is 0 and monomial symmetric functions when t is 1 and are special cases of Macdonald polynomials.They were first defined indirectly by Philip Hall using the Hall algebra, and later defined directly by Dudley E. Littlewood (1961).

AttributesValues
rdf:type
rdfs:label
  • Hall–Littlewood polynomials
rdfs:comment
  • In mathematics, the Hall–Littlewood polynomials are symmetric functions depending on a parameter t and a partition λ. They are Schur functions when t is 0 and monomial symmetric functions when t is 1 and are special cases of Macdonald polynomials.They were first defined indirectly by Philip Hall using the Hall algebra, and later defined directly by Dudley E. Littlewood (1961).
foaf:isPrimaryTopicOf
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
title
  • Hall–Littlewood Polynomial
urlname
  • Hall-LittlewoodPolynomial
has abstract
  • In mathematics, the Hall–Littlewood polynomials are symmetric functions depending on a parameter t and a partition λ. They are Schur functions when t is 0 and monomial symmetric functions when t is 1 and are special cases of Macdonald polynomials.They were first defined indirectly by Philip Hall using the Hall algebra, and later defined directly by Dudley E. Littlewood (1961).
prov:wasDerivedFrom
page length (characters) of wiki page
is foaf:primaryTopic of
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is known for of
Faceted Search & Find service v1.17_git51 as of Sep 16 2020


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3319 as of Dec 29 2020, on Linux (x86_64-centos_6-linux-glibc2.12), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2021 OpenLink Software