About: Group (mathematics)     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Artifact100021939, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FGroup_%28mathematics%29

In mathematics, a group is a set equipped with a binary operation that combines any two elements to form a third element in such a way that four conditions called group axioms are satisfied, namely closure, associativity, identity and invertibility. One of the most familiar examples of a group is the set of integers together with the addition operation, but groups are encountered in numerous areas within and outside mathematics, and help focusing on essential structural aspects, by detaching them from the concrete nature of the subject of the study.

AttributesValues
rdf:type
rdfs:label
  • زمرة (رياضيات)
  • Grup (matemàtiques)
  • Grupa
  • Gruppe (Mathematik)
  • Ομάδα
  • Group (mathematics)
  • Grupo (algebro)
  • Grupo (matemática)
  • Talde (matematika)
  • Groupe (mathématiques)
  • Grúpa (matamaitic)
  • Grup (matematika)
  • 群 (数学)
  • Gruppo (matematica)
  • 군 (수학)
  • Groep (wiskunde)
  • Grupa (matematyka)
  • Группа (математика)
  • Grupo (matemática)
  • Grupp (matematik)
  • Група (математика)
rdfs:comment
  • Grupo estas grava ĉefkoncepto de matematiko, unu el algebraj strukturoj.
  • En álgebra abstracta, un grupo es una estructura algebraica formada por un conjunto no vacío dotado de una operación interna que combina cualquier par de elementos para componer un tercero, dentro del mismo conjunto y que satisface las propiedades asociativa, existencia de elemento neutro y simétrico .​
  • Aljebra abstraktuan taldea da multzorako eragiketa elkartze propietatea eta elementu alderantzizko eta neutroaren existentzia betetzen dituen egitura aljebraikoa.
  • 数学における群(ぐん、英: group)とは最も基本的と見なされる代数的構造の一つである。群はそれ自体興味深い考察対象であり、群論における主要な研究対象となっているが、数学や物理学全般にわたってさまざまな構成に対する基礎的な枠組みを与えている。
  • 추상대수학에서, 군(群, 영어: group)은 결합 법칙과 항등원과 각 원소의 역원을 가지는 이항 연산을 갖춘 대수 구조이다. 여기서 대수 구조는 일련의 연산을 갖춘 집합으로 정의되며, 결합 법칙은 괄호를 넣는 방식이 연산 결과에 영향을 주지 않음을 의미한다. 항등원은 곱셈의 1 또는 덧셈의 0과 같은 성질의 원소이며, 역원은 곱셈에서의 역수 또는 덧셈에서의 반수와 같다. 군은 각 원소가 역원을 가지는 모노이드로 정의될 수도 있다. 여기서 모노이드는 결합 법칙과 항등원을 가지는 이항 연산을 갖춘 대수 구조를 말한다. 수학적 대상의 대칭들의 집합은 군을 이루며, 이에 따라 다양한 분야에서 널리 등장하는 개념이다. 군을 연구하는 추상대수학의 분야를 군론(群論, 영어: group theory)이라고 한다. 역사적으로 군론은 대수 방정식 이론과 기하학과 수론에서 기원한다.
  • Grupa – struktura algebraiczna definiowana jako zbiór z określonym na nim łącznym i odwracalnym dwuargumentowym działaniem wewnętrznym; szczególny przypadek monoidu, w którym każdy element ma element odwrotny (zob. ). Dział matematyki badający własności grup nazywa się teorią grup.
  • En grupp är en typ av abstrakt algebraisk struktur vars studium kallas gruppteori. Grupper är närliggande till den moderna matematikens kategoriteori.
  • Гру́па — одне з найважливіших понять сучасної алгебри, яке має численні застосування у багатьох суміжних дисциплінах. Здебільшого група виникає як множина всіх перетворень (симетрій) деякої структури. Результатом послідовного застосування двох перетворень буде знову деяке перетворення. Поняття абстрактної групи є узагальненням груп симетрій і визначається як множина із операцією множення (композиції), що задовольняє певним аксіомам (асоціативності, існування нейтрального та оберненого елемента).У застосуваннях математики групи часто виникають як засіб систематично описуватисиметрії різного ґатунку або як .
  • في الرياضيات، الزمرة (بالإنجليزية: Group) هي بنية جبرية تتكون من مجموعة من العناصر مزودة بعملية ثنائية تُخرج ناتجًا تتحقق فيه أربعة شروط تسمى البدبهيات وهي الانغلاق والتجميعية ووجود العنصر المحايد ووجود العنصر المعاكس، ما يجعلها تطبيقًا للبديهيات في الجبر المجرد. يُمكن مبدأ الزمر القائم على تصنيف العناصر وعملياتها الثنائية على أساس طبيعتها، بالتعامل بمرونة مع الكيانات ذات الأصول الرياضية المتنوعة في الجبر المجرد وغيره مع الحفاظ على جوانبها البنيوية الأساسية. إن الاستخدام الواسع للزمر في مجالات عديدة داخل الرياضيات وخارجها جعلها مبدأً تنظيميًّا محوريًّا في الرياضيات المعاصرة. تمثل مجموعة الأعداد الصحيحة زمرة تحت عملية الجمع وتعد مثالًا للزمر، ومن الأمثلة الأخرى على الزمر الأعداد الكسرية غير المساوية للصفر تحت عملية الضرب، والتناظر في الشكل الهندسي المنتظم، وزمرة المصفوفات التي لا تساوي محدد
  • Un grup és una estructura algebraica formada per un conjunt G d'elements on hi ha definida una operació binària, com pot ser la suma o el producte, i que compleix unes propietats determinades que es detallaran més endavant.
  • Grupa je v matematice algebraická struktura, která popisuje a formalizuje koncept symetrie. Formálně se zavádí jako množina spolu s binární operací splňující níže uvedené axiomy. Matematická disciplína zabývající se studiem grup se nazývá teorie grup. Příklady grup jsou celá čísla s operací sčítání, nenulová racionální čísla s operací násobení, symetrie pravidelných geometrických útvarů, množiny regulárních matic a automorfismy různých algebraických struktur.
  • In der Mathematik ist eine Gruppe eine Menge von Elementen zusammen mit einer Verknüpfung, die je zwei Elementen der Menge ein drittes Element derselben Menge zuordnet und dabei drei Bedingungen, die Gruppenaxiome, erfüllt: das Assoziativgesetz, die Existenz eines neutralen Elements und die Existenz von inversen Elementen.
  • Στα μαθηματικά, ομάδα είναι ένα σύνολο στοιχείων εφοδιασμένο με μία πράξη, η οποία συνδυάζει δύο στοιχεία του συνόλου για να σχηματίσουν ένα τρίτο στοιχείο που ανήκει επίσης στο σύνολο, ικανοποιώντας ταυτόχρονα τέσσερις συνθήκες που ονομάζονται αξιώματα της ομάδας και αναφορικά είναι η , η προσεταιριστική ιδιότητα, η ύπαρξη ουδέτερου στοιχείου και η ύπαρξη αντιστρόφων. Ένα από τα πιο γνώριμα παραδείγματα ομάδας είναι το σύνολο των ακεραίων με την πράξη της πρόσθεσης. Η πρόσθεση δύο οποιονδήποτε ακεραίων έχει ως αποτέλεσμα ακέραιο. Η αφηρημένη διατύπωση των αξιωμάτων της ομάδας, τις καθιστά ένα κυρίαρχο εργαλείο της έρευνας στους περισσότερους κλάδους της αλλά και σε άλλους τομείς.
  • In mathematics, a group is a set equipped with a binary operation that combines any two elements to form a third element in such a way that four conditions called group axioms are satisfied, namely closure, associativity, identity and invertibility. One of the most familiar examples of a group is the set of integers together with the addition operation, but groups are encountered in numerous areas within and outside mathematics, and help focusing on essential structural aspects, by detaching them from the concrete nature of the subject of the study.
  • En mathématiques, un groupe est une des structures algébriques fondamentales de l'algèbre générale. C'est un ensemble muni d'une loi de composition interne associative admettant un élément neutre et, pour chaque élément de l'ensemble, un élément symétrique. La structure de groupe est commune à de nombreux ensembles de nombres — par exemple les nombres entiers relatifs, munis de la loi d'addition. Mais cette structure se retrouve aussi dans de nombreux autres domaines, notamment en algèbre, ce qui en fait une notion centrale des mathématiques modernes.
  • Dalam matematika, grup adalah suatu himpunan, beserta satu operasi biner, seperti perkalian atau penjumlahan, yang memenuhi beberapa aksioma yang disebut aksioma grup. Misalnya, himpunan bilangan bulat adalah suatu grup terhadap operasi penjumlahan. Cabang matematika yang mempelajari grup disebut teori grup.
  • In matematica un gruppo è una struttura algebrica formata dall'abbinamento di un insieme non vuoto con un'operazione binaria interna (come ad esempio la somma o il prodotto), che soddisfa gli assiomi dell'associatività e dell'esistenza dell'elemento neutro e inverso.
  • In de groepentheorie, een deelgebied van de wiskunde, is een groep een bepaalde algebraïsche structuur. Een groep bestaat uit een verzameling en een operatie (groepsbewerking), die altijd op twee elementen van werkt, dus een binaire operatie. Groepen voldoen aan een aantal voorwaarden of axioma's. Er zijn vier groepsaxioma's: de operatie is gesloten, de operatie is associatief, er is in de groep een neutraal element voor de operatie, de identiteit, en ieder element in de groep heeft een inverse. Een voorbeeld van een groep vormen de gehele getallen met de optelling als operatie.
  • Em matemática, um grupo é um conjunto de elementos associados a uma operação que combina dois elementos quaisquer para formar um terceiro. Para se qualificar como grupo o conjunto e a operação devem satisfazer algumas condições chamadas axiomas de grupo: associatividade, elemento neutro e elementos inversos. Apesar destes serem comuns a muitas estruturas matemáticas familiares - e.g. os números inteiros munidos da adição formam um grupo - a formulação dos axiomas é independente da natureza concreta do grupo e sua operação. Isso permite lidar-se com entidade de origens matemáticas completamente diferentes de uma maneira flexível, mas retendo os aspectos estruturais essenciais de muitos objetos da álgebra abstrata e além. A ubiquidade dos grupos em inúmeras áreas - dentro e fora da matemátic
  • Гру́ппа в математике — множество, на котором определена ассоциативная бинарная операция, причём для этой операции имеется нейтральный элемент (аналог единицы для умножения), и каждый элемент множества имеет обратный. Ветвь общей алгебры, занимающаяся группами, называется теорией групп. Понятие группы ввёл Эварист Галуа, изучая многочлены в 1830-е годы.
  • 在數學中,群(group)是由一種集合以及一個二元運算所組成的,並且符合“群公理”。群公理包含下述四个性质的代數結構。这四个性质是封闭性、結合律、單位元和对于集合中所有元素存在逆元素。 很多熟知的數學結構比如數系統都遵从群公理,例如整數配備上加法運算就形成一個群。如果将群公理的公式從具体的群和其運算中抽象出來,就使得人们可以用靈活的方式来處理起源于抽象代數或其他许多数学分支的實體,而同时保留對象的本質結構性质。 群在數學內外各個領域中是無處不在的,这使得它們成為當代數學的组成的中心原理。 群與对称性有密切的联系。例如,對稱群描述了几何体的对称性:它是保持物體不變的變換的集合。李群应用于粒子物理的标准模型之中;庞加莱群也是李群,能表达狭义相对论中的对称性;点群能帮助理解分子化学中的对称现象。
rdfs:seeAlso
foaf:depiction
  • External Image
foaf:isPrimaryTopicOf
thumbnail
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git51 as of Sep 16 2020


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3319 as of Dec 29 2020, on Linux (x86_64-centos_6-linux-glibc2.12), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2021 OpenLink Software