About: Gauss map     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Artifact100021939, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FGauss_map

In differential geometry, the Gauss map (named after Carl F. Gauss) maps a surface in Euclidean space R3 to the unit sphere S2. Namely, given a surface X lying in R3, the Gauss map is a continuous map N: X → S2 such that N(p) is a unit vector orthogonal to X at p, namely the normal vector to X at p. Gauss first wrote a draft on the topic in 1825 and published in 1827. There is also a Gauss map for a link, which computes linking number.

AttributesValues
rdf:type
rdfs:label
  • Gauß-Abbildung
  • Gauss map
  • Application de Gauss
  • Gauss-afbeelding
  • Aplicação de Gauss
  • Отображение Гаусса
  • Відображення Гауса
rdfs:comment
  • In der Differentialgeometrie bildet die Gauß-Abbildung (benannt nach Carl F. Gauß) eine Fläche im euklidischen Raum auf die Einheitssphäre ab. Gauß schrieb erstmals im Jahr 1825 über das Thema und veröffentlichte es 1827.
  • En géométrie différentielle classique, l'application de Gauss est une application naturelle différentiable sur une surface de , à valeurs dans la sphère unité , et dont la différentielle permet d'accéder à la seconde forme fondamentale. Elle tient son nom du mathématicien allemand Carl Friedrich Gauss.
  • In de differentiaalmeetkunde, een deelgebied van de meetkunde, beeldt de Gauss-afbeelding (vernoemd naar Carl Friedrich Gauss) een oppervlak in de Euclidische ruimte R3 af op de eenheidssfeer S2. Namelijk, gegeven een oppervlak X dat in R3 ligt, is de Gauss-afbeelding een continue afbeelding N: X → S2 dusdanig dat N(p) een eenheidsvector loodrecht op X in p is, namelijk de normaalvector naar X op p.
  • Отображение Гаусса (гауссово отображение, сферическое отображение) — отображение из гладкой поверхности в трёхмерном евклидовом пространстве в единичную сферу, при котором точка поверхности отображается в вектор единичной нормали в этой точке. Названо в честь Карла Фридриха Гаусса.
  • In differential geometry, the Gauss map (named after Carl F. Gauss) maps a surface in Euclidean space R3 to the unit sphere S2. Namely, given a surface X lying in R3, the Gauss map is a continuous map N: X → S2 such that N(p) is a unit vector orthogonal to X at p, namely the normal vector to X at p. Gauss first wrote a draft on the topic in 1825 and published in 1827. There is also a Gauss map for a link, which computes linking number.
  • Em geometria diferencial, a aplicação de Gauss (também grafado aplicação de Gauß), mapa de Gauss, mapa gaussiano ou aplicação gaussiana (nomeado devido a Carl Friedrich Gauss) relaciona uma superfície no espaço euclidiano para a esfera unitária . Dada uma superfície em , a aplicação de Gauss é uma aplicação contínua tal que é um vetor ortogonal a X em p. Gauss foi o primeiro a escrever algo sobre o tópico em 1825, publicando-o em 1827.
  • Відображення Гауса (сферичне відображення, нормальне відображення) — відображення з гладкої орієнтовної поверхні в тривимірному евклідовому просторі в одиничну сферу, при якому точка поверхні відображається у вектор одиничної нормалі в цій точці. Більш загально подібне відображення можна ввести для гіперповерхонь у евклідових просторах довільної розмірності. Для підмноговидів евклідового простору довільної розмірності і корозмірності природним аналогом відображення Гауса є відображення, що зіставляє точці підмноговидів точку грассманіана, відповідну дотичному простору в цій точці.
foaf:depiction
  • External Image
foaf:isPrimaryTopicOf
thumbnail
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
title
  • Gauss Map
urlname
  • GaussMap
has abstract
  • In differential geometry, the Gauss map (named after Carl F. Gauss) maps a surface in Euclidean space R3 to the unit sphere S2. Namely, given a surface X lying in R3, the Gauss map is a continuous map N: X → S2 such that N(p) is a unit vector orthogonal to X at p, namely the normal vector to X at p. The Gauss map can be defined (globally) if and only if the surface is orientable, in which case its degree is half the Euler characteristic. The Gauss map can always be defined locally (i.e. on a small piece of the surface). The Jacobian determinant of the Gauss map is equal to Gaussian curvature, and the differential of the Gauss map is called the shape operator. Gauss first wrote a draft on the topic in 1825 and published in 1827. There is also a Gauss map for a link, which computes linking number.
  • In der Differentialgeometrie bildet die Gauß-Abbildung (benannt nach Carl F. Gauß) eine Fläche im euklidischen Raum auf die Einheitssphäre ab. Gauß schrieb erstmals im Jahr 1825 über das Thema und veröffentlichte es 1827.
  • En géométrie différentielle classique, l'application de Gauss est une application naturelle différentiable sur une surface de , à valeurs dans la sphère unité , et dont la différentielle permet d'accéder à la seconde forme fondamentale. Elle tient son nom du mathématicien allemand Carl Friedrich Gauss.
  • In de differentiaalmeetkunde, een deelgebied van de meetkunde, beeldt de Gauss-afbeelding (vernoemd naar Carl Friedrich Gauss) een oppervlak in de Euclidische ruimte R3 af op de eenheidssfeer S2. Namelijk, gegeven een oppervlak X dat in R3 ligt, is de Gauss-afbeelding een continue afbeelding N: X → S2 dusdanig dat N(p) een eenheidsvector loodrecht op X in p is, namelijk de normaalvector naar X op p.
  • Em geometria diferencial, a aplicação de Gauss (também grafado aplicação de Gauß), mapa de Gauss, mapa gaussiano ou aplicação gaussiana (nomeado devido a Carl Friedrich Gauss) relaciona uma superfície no espaço euclidiano para a esfera unitária . Dada uma superfície em , a aplicação de Gauss é uma aplicação contínua tal que é um vetor ortogonal a X em p. A aplicação de Gauss pode ser definida globalmente se e somente se a superfície é orientável, no caso em que seu grau é metade da respectiva característica de Euler. A aplicação de Gauss pode ser sempre definida localmente. O determinante Jacobiano da aplicação de Gauss é igual à curvatura de Gauss. Gauss foi o primeiro a escrever algo sobre o tópico em 1825, publicando-o em 1827.
  • Отображение Гаусса (гауссово отображение, сферическое отображение) — отображение из гладкой поверхности в трёхмерном евклидовом пространстве в единичную сферу, при котором точка поверхности отображается в вектор единичной нормали в этой точке. Названо в честь Карла Фридриха Гаусса.
  • Відображення Гауса (сферичне відображення, нормальне відображення) — відображення з гладкої орієнтовної поверхні в тривимірному евклідовому просторі в одиничну сферу, при якому точка поверхні відображається у вектор одиничної нормалі в цій точці. Більш загально подібне відображення можна ввести для гіперповерхонь у евклідових просторах довільної розмірності. Диференціал відображення Гауса називається відображенням Вейнгартена. Оскільки дотичні площини до поверхні в деякій точці p і до одиничної сфери в образі точки p відображення Гауса є паралельними, відображення Вейнгартена можна інтерпретувати як лінійне відображення на дотичній площині до точки p. Для підмноговидів евклідового простору довільної розмірності і корозмірності природним аналогом відображення Гауса є відображення, що зіставляє точці підмноговидів точку грассманіана, відповідну дотичному простору в цій точці.
prov:wasDerivedFrom
page length (characters) of wiki page
is foaf:primaryTopic of
is Link from a Wikipage to another Wikipage of
Faceted Search & Find service v1.17_git51 as of Sep 16 2020


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3319 as of Dec 29 2020, on Linux (x86_64-centos_6-linux-glibc2.12), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2021 OpenLink Software