About: Fourier amplitude sensitivity testing     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : dbo:Software, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FFourier_amplitude_sensitivity_testing

Fourier amplitude sensitivity testing (FAST) is a variance-based global sensitivity analysis method. The sensitivity value is defined based on conditional variances which indicate the individual or joint effects of the uncertain inputs on the output. FAST is more efficient to calculate sensitivities than other variance-based global sensitivity analysis methods via Monte Carlo integration. However the calculation by FAST is usually limited to sensitivities referred to as “main effects” or “first-order effects” due to the computational complexity in computing higher-order effects.

AttributesValues
rdf:type
rdfs:label
  • Fourier amplitude sensitivity testing (en)
rdfs:comment
  • Fourier amplitude sensitivity testing (FAST) is a variance-based global sensitivity analysis method. The sensitivity value is defined based on conditional variances which indicate the individual or joint effects of the uncertain inputs on the output. FAST is more efficient to calculate sensitivities than other variance-based global sensitivity analysis methods via Monte Carlo integration. However the calculation by FAST is usually limited to sensitivities referred to as “main effects” or “first-order effects” due to the computational complexity in computing higher-order effects. (en)
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/Search_curve_1.gif
  • http://commons.wikimedia.org/wiki/Special:FilePath/Search_curve_2.gif
  • http://commons.wikimedia.org/wiki/Special:FilePath/Search_curve_3.gif
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
thumbnail
has abstract
  • Fourier amplitude sensitivity testing (FAST) is a variance-based global sensitivity analysis method. The sensitivity value is defined based on conditional variances which indicate the individual or joint effects of the uncertain inputs on the output. FAST first represents conditional variances via coefficients from the multiple Fourier series expansion of the output function. Then the ergodic theorem is applied to transform the multi-dimensional integral to a one-dimensional integral in evaluation of the Fourier coefficients. A set of incommensurate frequencies is required to perform the transform and most frequencies are irrational. To facilitate computation a set of integer frequencies is selected instead of the irrational frequencies. The integer frequencies are not strictly incommensurate, resulting in an error between the multi-dimensional integral and the transformed one-dimensional integral. However, the integer frequencies can be selected to be incommensurate to any order so that the error can be controlled meeting any precision requirement in theory. Using integer frequencies in the integral transform, the resulted function in the one-dimensional integral is periodic and the integral only needs to evaluate in a single period. Next, since the continuous integral function can be recovered from a set of finite sampling points if the Nyquist–Shannon sampling theorem is satisfied, the one-dimensional integral is evaluated from the summation of function values at the generated sampling points. FAST is more efficient to calculate sensitivities than other variance-based global sensitivity analysis methods via Monte Carlo integration. However the calculation by FAST is usually limited to sensitivities referred to as “main effects” or “first-order effects” due to the computational complexity in computing higher-order effects. (en)
gold:hypernym
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is Wikipage disambiguates of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (61 GB total memory, 49 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software