About: Extended real number line     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:WikicatNumbers, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FExtended_real_number_line

In mathematics, the affinely extended real number system is obtained from the real number system ℝ by adding two elements: + ∞ and − ∞ (read as positive infinity and negative infinity respectively), where the infinities are treated as actual numbers. It is useful in describing the algebra on infinities and the various limiting behaviors in calculus and mathematical analysis, especially in the theory of measure and integration. The affinely extended real number system is denoted or [−∞, +∞] or ℝ ∪ {−∞, +∞}. When the meaning is clear from context, the symbol +∞ is often written simply as ∞.

AttributesValues
rdf:type
rdfs:label
  • Recta real estesa
  • Rozšířená reálná čísla
  • Erweiterte reelle Zahl
  • Extended real number line
  • Recta real extendida
  • Droite réelle achevée
  • 拡大実数
  • 확장된 실수
  • Rozszerzony zbiór liczb rzeczywistych
  • Расширенная числовая прямая
  • Невласне число
  • 擴展實數線
rdfs:comment
  • Rozšířená reálná čísla (značení ) je název používaný v matematické analýze pro množinu , tedy pro reálná čísla rozšířené o dva symboly pro kladné a záporné nekonečno. Jejich hlavní přínos spočívá v tom, že je možné pomocí nich definovat některé matematické pojmy pro několik situací zároveň, což definici zkrátí a zpřehlední. Například v definici pro limitu funkce je potřeba ošetřit celkem devět možností: i může být reálné číslo, nebo ; pomocí rozšířených reálných čísel je možno těchto devět možností vyjádřit jednou formulí.
  • En matemàtica, una recta real estesa s'obté a partir dels nombres reals amb l'afegit de dos elements: i (infinit positiu i infinit negatiu, respectivament). Es denota per o bé i és utilitzada per descriure diversos comportaments al límit a càlcul infinitesimal i anàlisi matemàtica, especialment en la teoria de la mesura i integració. Quan el significat es dedueix del context, el símbol s'escriu simplement . La recta real estesa projectiva afegeix un sol objecte: (infinit), i no fa distinció entre infinits «positiu» o «negatiu». Aquests nous elements no són nombres reals.
  • In mathematics, the affinely extended real number system is obtained from the real number system ℝ by adding two elements: + ∞ and − ∞ (read as positive infinity and negative infinity respectively), where the infinities are treated as actual numbers. It is useful in describing the algebra on infinities and the various limiting behaviors in calculus and mathematical analysis, especially in the theory of measure and integration. The affinely extended real number system is denoted or [−∞, +∞] or ℝ ∪ {−∞, +∞}. When the meaning is clear from context, the symbol +∞ is often written simply as ∞.
  • En mathématiques, la droite réelle achevée désigne l'ensemble ordonné constitué des nombres réels auxquels sont adjoints deux éléments supplémentaires : un plus grand élément, noté +∞ et un plus petit élément, noté –∞. Elle est notée [–∞, +∞], ℝ ∪ {–∞, +∞} ou ℝ (la barre symbolise ici l'adhérence car dans la droite réelle achevée munie de la topologie de l'ordre, ℝ est dense). Cet ensemble est très utile en analyse et particulièrement dans certaines théories de l'intégration.
  • 数学における拡張実数(かくちょうじっすう、英: extended real number; 拡大実数)あるいはより精確にアフィン拡張実数 (affinely extended real number) は、通常の実数に正の無限大 +∞ と負の無限大 −∞ の二つを加えた体系を言う。新しく付け加えられた元(無限大、無限遠点)は(通常の)実数ではないが、文脈によってはこれらを含めた全ての拡張実数を指して便宜的に「実数」と呼ぶこともあり、その場合通常の実数は有限実数と呼んで区別する。拡張実数の概念は、微分積分学や解析学(特に測度論と積分法)において種々の函数の極限についての記述を簡素化するのに有効である。(アフィン)拡張実数全体の成す集合 R ∪ {±∞} は、その上の適当な順序構造や位相構造などを持つものとして補完数直線(ほかんすうちょくせん、英: extended real line; 拡張実数直線)と呼ばれ、R や [−∞, +∞] と書かれる。 文脈から意味が明らかな場合には、正の無限大の記号 +∞ はしばしば単に ∞ と書かれる。
  • 수학에서, 확장된 실수(擴張된實數, 영어: extended real number)는 실수이거나 아니면 ±∞인 수이다.
  • Расширенная числовая прямая — множество вещественных чисел , дополненное двумя бесконечно удалёнными точками: (положительная бесконечность) и (отрицательная бесконечность), то есть . При этом для любого вещественного числа по определению полагают выполненными неравенства . В некоторых дидактических материалах используется одна бесконечно удалённая точка , не связанная соотношением порядка с действительными числами (подобно одной проективной прямой в проективной геометрии и бесконечно удалённой точке в комплексном анализе).
  • Невласними числами називають два числа: плюс нескінченність () та мінус нескінченність (), які додаються до множини дійсних чисел, утворюючи розширену множину дійсних чисел. Плюс нескінченність визначається як число, більше від будь-якого дійсного числа. Мінус нескінченність визначається як число, менше від будь-якого дійсного числа.
  • 擴展實數線又稱廣義實數,(英語:extended real number),由實數線 加上 和 得到(注意 和 并不是实数),写作 、[−∞, +∞] 或 ℝ ∪ {−∞, +∞}。在不會混淆時,符號 +∞ 常簡寫成 ∞。扩展的實數線在研究数学分析,特别是积分时非常有用。
  • Als erweiterte reelle Zahlen bezeichnet man in der Mathematik eine Menge, die aus dem Körper der reellen Zahlen durch Hinzufügen neuer Symbole für unendliche Elemente (auch: uneigentliche Punkte) entsteht. Man unterscheidet genauer zwischen den affin erweiterten reellen Zahlen, bei denen es zwei vorzeichenbehaftete uneigentliche Punkte gibt, und den projektiv erweiterten reellen Zahlen mit nur einem vorzeichenlosen uneigentlichen Punkt.Ohne den Zusatz affin bzw. projektiv wird der Begriff erweiterte reelle Zahlen in der Literatur üblicherweise gleichbedeutend mit affin erweiterte reelle Zahlen verwendet, in diesem Artikel wird dieser jedoch als gemeinsamer Oberbegriff für beide Erweiterungen genutzt.
  • En matemática, la recta real extendida o recta real acabada, es un espacio métrico que se obtiene a partir de los números reales ​ por la añadidura de dos elementos: y (léase infinito positivo e infinito negativo, respectivamente). A cada número real le corresponde un punto de la recta, y a cada punto de la recta le corresponde un número real; por ello, se dice que los números reales completan la recta.​ La recta real extendida proyectiva añade un solo objeto: (punto del infinito), y no hace distinción entre infinitos «positivo» o «negativo». Estos nuevos elementos no son números reales.
  • Rozszerzony zbiór liczb rzeczywistych – zbiór liczb rzeczywistych z dołączonym jednym lub dwoma „elementami nieskończonymi”, pierwsze z tych rozszerzeń nazywane jest jednopunktowym bądź rzutowym, drugie z kolei dwupunktowym lub afinicznym.
foaf:isPrimaryTopicOf
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
Faceted Search & Find service v1.17_git51 as of Sep 16 2020


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3319 as of Dec 29 2020, on Linux (x86_64-centos_6-linux-glibc2.12), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2021 OpenLink Software