About: Exsymmedian     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FExsymmedian

The exsymmedians are three lines associated with a triangle. More precisely for a given triangle the exsymmedians are the tangent lines on the triangle's circumcircle through the three vertices of the triangle. The triangle formed by the three exsymmedians is the tangential triangle and its vertices, that is the three intersections of the exsymmedians are called exsymmedian points. For a triangle with being the exsymmedians and being the symmedians through the vertices two exsymmedians and one symmedian intersect in a common point, that is:

AttributesValues
rdfs:label
  • Exsymmedian
  • Exsymmedian
rdfs:comment
  • Die Exsymmediane eines Dreiecks sind definiert als die Tangenten an dem Umkreis des Dreiecks in den Eckpunkten des Dreiecks. Diese drei Exsymmediane bilden ein neues Dreieck, dessen Eckpunkte als Exsymmedian-Punkte bezeichnet werden. Durch die Exsymmedian-Punkte verläuft auch je ein Symmedian, das heißt zwei Exsymmediane und ein zugehöriger Symmedian schneiden in einem gemeinsamen Punkt. Genauer gilt für ein Dreieck mit Exsymmedianen , Symmedianen und Exsymmedian-Punkten :
  • The exsymmedians are three lines associated with a triangle. More precisely for a given triangle the exsymmedians are the tangent lines on the triangle's circumcircle through the three vertices of the triangle. The triangle formed by the three exsymmedians is the tangential triangle and its vertices, that is the three intersections of the exsymmedians are called exsymmedian points. For a triangle with being the exsymmedians and being the symmedians through the vertices two exsymmedians and one symmedian intersect in a common point, that is:
foaf:isPrimaryTopicOf
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • Die Exsymmediane eines Dreiecks sind definiert als die Tangenten an dem Umkreis des Dreiecks in den Eckpunkten des Dreiecks. Diese drei Exsymmediane bilden ein neues Dreieck, dessen Eckpunkte als Exsymmedian-Punkte bezeichnet werden. Durch die Exsymmedian-Punkte verläuft auch je ein Symmedian, das heißt zwei Exsymmediane und ein zugehöriger Symmedian schneiden in einem gemeinsamen Punkt. Genauer gilt für ein Dreieck mit Exsymmedianen , Symmedianen und Exsymmedian-Punkten : Die Länge der senkrechten Verbindungsstrecke zwischen einem Exsymmedian-Punkt und zugehöriger Dreiecksseite ist proportional zu dieser Dreiecksseite und es gelten die folgenden Formeln: Hierbei bezeichnen die Fläche des Dreiecks und die senkrechten Verbindungsstrecken zwischen den Dreiecksseiten und den Exsymmedian-Punkten .
  • The exsymmedians are three lines associated with a triangle. More precisely for a given triangle the exsymmedians are the tangent lines on the triangle's circumcircle through the three vertices of the triangle. The triangle formed by the three exsymmedians is the tangential triangle and its vertices, that is the three intersections of the exsymmedians are called exsymmedian points. For a triangle with being the exsymmedians and being the symmedians through the vertices two exsymmedians and one symmedian intersect in a common point, that is: The length of the perpendicular line segment connecting a triangle side with its associated exsymmedian point is proportional to that triangle side. Specifically the following formulas apply: Here denotes the area of the triangle and the perpendicular line segments connecting the triangle sides with the exsymmedian points .
prov:wasDerivedFrom
page length (characters) of wiki page
is foaf:primaryTopic of
is Link from a Wikipage to another Wikipage of
Faceted Search & Find service v1.17_git51 as of Sep 16 2020


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3319 as of Dec 29 2020, on Linux (x86_64-centos_6-linux-glibc2.12), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2021 OpenLink Software