An exponential tree is almost identical to a binary search tree, with the exception that the dimension of the tree is not the same at all levels. In a normal binary search tree, each node has a dimension (d) of 1, and has 2d children. In an exponential tree, the dimension equals the depth of the node, with the root node having a d = 1. So the second level can hold four nodes, the third can hold eight nodes, the fourth 16 nodes, and so on.
Attributes | Values |
---|
rdf:type
| |
rdfs:label
| - Exponential tree (en)
- Arbre exponentiel (fr)
|
rdfs:comment
| - An exponential tree is almost identical to a binary search tree, with the exception that the dimension of the tree is not the same at all levels. In a normal binary search tree, each node has a dimension (d) of 1, and has 2d children. In an exponential tree, the dimension equals the depth of the node, with the root node having a d = 1. So the second level can hold four nodes, the third can hold eight nodes, the fourth 16 nodes, and so on. (en)
- Un arbre exponentiel est presque identique à un arbre binaire de recherche, à l'exception que le nombre d'enfants des nœuds de l'arbre n'est pas la même à tous les niveaux. Dans un arbre binaire de recherche, chaque nœud a 2 enfants. Dans un arbre exponentiel, la dimension[Quoi ?] est égale à la profondeur du nœud (le nœud racine ayant une profondeur d = 1), c'est-à-dire qu'un nœud de profondeur d aura 2d enfants qui auront chacun deux fois plus d'enfants. Ainsi, le deuxième niveau peut contenir quatre nœuds, le troisième peut contenir huit nœuds, le quatrième 16 nœuds, etc. (fr)
|
name
| |
dcterms:subject
| |
Wikipage page ID
| |
Wikipage revision ID
| |
Link from a Wikipage to another Wikipage
| |
Link from a Wikipage to an external page
| |
sameAs
| |
space avg
| |
space worst
| |
dbp:wikiPageUsesTemplate
| |
type
| |
has abstract
| - An exponential tree is almost identical to a binary search tree, with the exception that the dimension of the tree is not the same at all levels. In a normal binary search tree, each node has a dimension (d) of 1, and has 2d children. In an exponential tree, the dimension equals the depth of the node, with the root node having a d = 1. So the second level can hold four nodes, the third can hold eight nodes, the fourth 16 nodes, and so on. (en)
- Un arbre exponentiel est presque identique à un arbre binaire de recherche, à l'exception que le nombre d'enfants des nœuds de l'arbre n'est pas la même à tous les niveaux. Dans un arbre binaire de recherche, chaque nœud a 2 enfants. Dans un arbre exponentiel, la dimension[Quoi ?] est égale à la profondeur du nœud (le nœud racine ayant une profondeur d = 1), c'est-à-dire qu'un nœud de profondeur d aura 2d enfants qui auront chacun deux fois plus d'enfants. Ainsi, le deuxième niveau peut contenir quatre nœuds, le troisième peut contenir huit nœuds, le quatrième 16 nœuds, etc. (fr)
|
delete avg
| |
delete worst
| |
insert avg
| |
insert worst
| |
invented by
| |
invented year
| |
search avg
| |
search worst
| |
prov:wasDerivedFrom
| |
page length (characters) of wiki page
| |
foaf:isPrimaryTopicOf
| |
is Link from a Wikipage to another Wikipage
of | |
is foaf:primaryTopic
of | |