About: Existential quantification     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Communication100033020, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FExistential_quantification

In predicate logic, an existential quantification is a type of quantifier, a logical constant which is interpreted as "there exists", "there is at least one", or "for some". Some sources use the term existentialization to refer to existential quantification. It is usually denoted by the logical operator symbol ∃, which, when used together with a predicate variable, is called an existential quantifier ("∃x" or "∃(x)"). Existential quantification is distinct from universal quantification ("for all"), which asserts that the property or relation holds for all members of the domain.

AttributesValues
rdf:type
rdfs:label
  • Quantificador existencial
  • Existenční kvantifikátor
  • Existenzaussage
  • Existential quantification
  • Ekzistokvantigilo
  • Cuantificador existencial
  • Quantification existentielle
  • 存在記号
  • Existentie
  • 존재 양화사
  • Kwantyfikator egzystencjalny
  • Quantificação existencial
  • Квантор существования
  • Existenskvantifikator
  • Квантор існування
  • 存在量化
rdfs:comment
  • En lògica matemàtica, es fa servir el símbol: , anomenat quantificador existencial, anteposat a una variable per dir que hi ha almenys un element del conjunt a què fa referència la variable, que compleix la proposició escrita a continuació. Normalment, en lògica, el conjunt a què es fa referència és l'univers o domini de referència, que està format per totes les constants.
  • Existenční kvantifikátor (∃) (také malý kvantifikátor) je matematický symbol používaný nejčastěji v predikátové logice. Do běžného jazyka lze jeho význam přeložit jako existuje. Duálním kvantifikátorem k němu je univerzální kvantifikátor s významem pro každé.
  • En predikata logiko, la ekzistokvantigilo signas ke iun econ havas almenaŭ unu objekto. La eco estas esprimita per malferma formulo, do formulo, kiu entenas unu neligitan variablon. En la plej simpla kazo, tio estas unu-argumenta predikato.
  • In predicate logic, an existential quantification is a type of quantifier, a logical constant which is interpreted as "there exists", "there is at least one", or "for some". Some sources use the term existentialization to refer to existential quantification. It is usually denoted by the logical operator symbol ∃, which, when used together with a predicate variable, is called an existential quantifier ("∃x" or "∃(x)"). Existential quantification is distinct from universal quantification ("for all"), which asserts that the property or relation holds for all members of the domain.
  • En el lenguaje de predicados en lógica matemática, se usa el símbolo: !, llamado cuantificador existencial, ante puesto a una variable para decir que "existe al menos" un elemento del conjunto, , al que hace referencia la variable, que cumple la proposición escrita a continuación.​
  • 存在記号(そんざいきごう、existential quantifier)とは、数理論理学(特に述語論理)において、少なくとも1つのメンバーが述語の特性や関係を満たすことを表す記号である。通常「∃」と表記され、存在量化子(そんざいりょうかし)、存在限量子(そんざいげんりょうし)、存在限定子(そんざいげんていし)などとも呼ばれる。 これとは対照的に全称記号は、何かが常に真であることを示す。
  • 술어 논리에서 존재 양화(existential quantification)란, 양화의 일종으로, 주어진 술어를 만족시키는 객체가 논의 영역에 적어도 하나 존재함을 나타낸다. 이는 논리 연산 기호 ∃로 표현되며, 이 기호를 존재 양화사 또는 존재 기호라 한다. 보편 양화사와 함께 술어 논리의 주요한 양화사의 하나이다.
  • Existentie betekent in de wiskunde en logica dat een eigenschap voor minstens één element van een verzameling geldt. De bijbehorende existentiekwantor wordt genoteerd als . De existentiekwantor bestaat uit drie delen: * Declaratie van gebonden variabelen; * Specificatie van het domein; * Propositie. Deze zullen hieronder uitvoeriger beschreven worden.
  • Na lógica de predicados, um quantificador existencial é a predicação de uma propriedade ou relação para, pelo menos, um elemento do domínio. O operador lógico ∃ é usado para denotar a quantificação existencial.
  • Existenskvantifikator eller Existenskvantor är ett begrepp inom predikatlogiken. Beteckning: ∃. Satsen "Det finns minst ett x för vilket predikatet P(x) gäller" skrivs Negationen av en existenskvantifierad sats ger en allkvantifierad sats, negationen av "det finns minst en vit korp" är "alla korpar är icke-vita":
  • У логіці предикатів, квантифікація існування — тип квантора, логічна константа, яка інтерпретується як «існує», «є принаймні один» або «для деяких». Деякі джерела використовують термін екзистенціалізація для позначення квантифікації існування. Вона зазвичай позначається символом логічного оператора (), який при використанні разом зі змінною предикату називається квантором існування ( або ). Квантор існування відрізняється від квантора загальності («для всіх»), який припускає, що властивість або відношення має місце для всіх членів області.
  • 在谓词逻辑中,存在量化是对论域内至少一个成员的性质或关系的论断。在符号逻辑中,存在量词∃是用来指示存在量化的符号。 它相对于声称某些谓词对所有事物都为真的全称量化。
  • Eine Existenzaussage ist eine Aussage beziehungsweise Behauptung des Inhalts, dass mindestens ein Gegenstand (Element, Individuum, Ereignis) eines bestimmten Gegenstandsbereichs eine bestimmte Eigenschaft hat, d. h., dass die betroffene Eigenschaft auf mindestens einen Gegenstand zutrifft. Ein Beispiel für eine Existenzaussage ist der Satz „In Berlin gibt es mindestens einen Tuberkulose-Kranken.“ Die logischen Eigenschaften der Existenzaussagen werden modern in der Prädikatenlogik und wurden traditionell als partikulär bejahende und verneinende Urteile in der Syllogistik behandelt.
  • En mathématiques et en logique, plus précisément en calcul des prédicats, l'existence d'un objet x satisfaisant une certaine propriété, ou prédicat, P se note ∃x P(x), où le symbole mathématique ∃, lu « il existe », est le quantificateur existentiel, et P(x) le fait pour l'objet x d'avoir la propriété P. L'objet x a la propriété P(x) s'exprime par une formule du calcul des prédicats. Pour exemples,
  • Kwantyfikator egzystencjalny, kwantyfikator mały, kwantyfikator szczegółowy – kwantyfikator oznaczający, że istnieje takie podstawienie zmiennej, dla którego dane twierdzenie (funkcja zdaniowa) jest prawdziwe. Stosuje się dwie postacie graficzne: (zapis ten jest związany z angielskim zwrotem „there exists”) oraz W obu przypadkach czyta się „istnieje takie dla którego zachodzi ”. Gdy formuła wymaga ustalenia zakresu dla zmiennej, np.: to używa się uproszczonej notacji: I czyta się „dla pewnego należącego do zbioru zachodzi ”. Stosowany bywa również zapis:
  • Квантор существования (экзистенциальный квантификатор) в предикатной логике — предикат свойства или отношения для по крайней мере одного элемента из области определения. Обозначается символом логического оператора ∃ (произносится как «существует» или «для некоторого»). Квантор существования следует отличать от квантора всеобщности, утверждающего, что указанное свойство или отношение выполняется для всех элементов области.
differentFrom
foaf:isPrimaryTopicOf
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
Faceted Search & Find service v1.17_git51 as of Sep 16 2020


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3319 as of Dec 29 2020, on Linux (x86_64-centos_6-linux-glibc2.12), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2021 OpenLink Software