About: Euclidean group     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Group100031264, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FEuclidean_group

In mathematics, a Euclidean group is the group of (Euclidean) isometries of an Euclidean space 𝔼n; that is, the transformations of that space that preserve the Euclidean distance between any two points (also called Euclidean transformations). The group depends only on the dimension n of the space, and is commonly denoted E(n) or ISO(n). These groups are among the oldest and most studied, at least in the cases of dimension 2 and 3 – implicitly, long before the concept of group was invented.

AttributesValues
rdf:type
rdfs:label
  • Eukleidova grupa
  • Euklidische Gruppe
  • Euclidean group
  • Grupo euclídeo
  • Isométrie affine
  • ユークリッドの運動群
  • 유클리드 군
  • Euclidische groep
  • Grupo euclidiano
  • 欧几里得群
rdfs:comment
  • Eukleidova grupa je v matematice množina všech posunutí, rotací a zrcadlení Euklidova prostoru spolu s operací skládání. Je to tedy množina všech zobrazení, které zachovávají vzdálenosti, velikosti vektorů a úhly. Pro n rozměrný Euklidův prostor se obvykle značí
  • Une isométrie affine est une transformation bijective d'un espace affine euclidien dans un autre qui est à la fois une application affine et une isométrie (c'est-à-dire une bijection conservant les distances). Si cette isométrie conserve aussi l'orientation, on dit que c'est un déplacement. Si elle inverse l'orientation, il s'agit d'un antidéplacement. Les déplacements sont les composés de translations et rotations. Les réflexions sont des antidéplacements.
  • 数学におけるユークリッド群(ユークリッド-ぐん、英: Euclidean group)あるいは運動群 (motion group) は、ユークリッド空間のを言う。その元はユークリッド距離に付随する等距変換であり、合同変換あるいはユークリッドの運動 (motion) と呼ばれる。ユークリッドの運動群の研究は、少なくとも二次元や三次元の場合については極めて古く、群の概念が発するよりもずっと以前から(従ってもちろん群としてでなく、もっと陰伏的な形で)よく調べられている。 n-次元ユークリッド空間の運動群は E(n) や iso(n) などとも表される。 三次元までの等長変換についての概観E(1), E(2), E(3) は自由度によって以下のように分類できる: 「」も参照 は E+(3) の任意の元が螺旋変位であることを主張する。 「三次元直交変換群|原点を固定する三次元の等距変換」、「空間群」、および「対合」も参照
  • 기하학에서, 유클리드 군(Euclid群, 영어: Euclidean group)은 유클리드 공간의 등거리 변환들로 구성된 리 군이다. 즉, 거리와 각도가 정의되지만, 원점이 정의되지 않는 유클리드 공간의 이다. (병진 변환)과 직교군(회전)의 반직접곱이다.
  • In de groepentheorie, een deelgebied van de wiskunde, is de euclidische groep , soms ook wel genoemd, de symmetriegroep van -dimensionale euclidische ruimte. De elementen van deze groep, de isometrieën geassocieerd met de euclidische metriek, worden euclidische isometrieën genoemd. De euclidische groepen tellen sinds lang, ruim voordat het concept van een groep expliciet werd geformuleerd, onder de oudste en meest bestudeerde, althans voor het geval van de dimensies 2 en 3.
  • Grupo euclidiano é o grupo de simetrias de um espaço afim euclidiano. As simetrias do espaço euclidiano (i.e., as transformações geométricas que preservam as medidas das distâncias e dos ângulos entre vetores) são as translações, rotações e reflexões.
  • 数学中,欧几里得群 E(n),或ISO(n)是n维欧氏空间的对称群。它的元素与基于欧氏距离的等距同构相关,并被称为欧式等距同构,欧式变换或。
  • In mathematics, a Euclidean group is the group of (Euclidean) isometries of an Euclidean space 𝔼n; that is, the transformations of that space that preserve the Euclidean distance between any two points (also called Euclidean transformations). The group depends only on the dimension n of the space, and is commonly denoted E(n) or ISO(n). These groups are among the oldest and most studied, at least in the cases of dimension 2 and 3 – implicitly, long before the concept of group was invented.
  • En matemáticas, un grupo euclídeo es el grupo característico de las isometrías de un espacio euclídeo 𝔼n; es decir, de las transformaciones de ese espacio que preservan la distancia euclidiana entre cualquier par de puntos (también llamadas ). La configuración del grupo depende únicamente de la dimensión n del espacio, y comúnmente se denota como E(n) o ISO(n). Este grupo está entre los más antiguos, al menos en los casos de dimensión 2 y 3 , siendo implícitamente estudiados mucho antes de que se ideara el concepto de grupo.
rdfs:seeAlso
foaf:isPrimaryTopicOf
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git51 as of Sep 16 2020


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3319 as of Dec 29 2020, on Linux (x86_64-centos_6-linux-glibc2.12), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2021 OpenLink Software