About: Erd?s?Straus conjecture     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Message106598915, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FErd%C5%91s%E2%80%93Straus_conjecture

In number theory, the Erdős–Straus conjecture states that for all integers n ≥ 2, the rational number 4/n can be expressed as the sum of three positive unit fractions. Paul Erdős and Ernst G. Straus formulated the conjecture in 1948. It is one of many conjectures by Erdős. The restriction that the three unit fractions be positive is essential to the difficulty of the problem, for if negative values were allowed the problem could always be solved.

AttributesValues
rdf:type
rdfs:label
  • Erdős-Straus-Vermutung
  • Erdős–Straus conjecture
  • Conjecture d'Erdős-Straus
  • Congettura di Erdős-Straus
  • 에르되시-스트라우스 추측
  • Vermoeden van Erdős-Straus
  • Гипотеза Эрдёша — Штрауса
  • Erdős–Straus förmodan
  • 歐德斯-史特勞斯猜想
rdfs:comment
  • Die zahlentheoretische Erdős-Straus-Vermutung (nach den Mathematikern Paul Erdős und Ernst Gabor Straus) besagt, dass stets einer Summe von drei positiven Stammbrüchen entspricht. Sie wurde im Jahr 1948 aufgestellt und ist eine von vielen Vermutungen von Paul Erdős.
  • La conjecture d'Erdős-Straus suppose que tout nombre rationnel de la forme , avec n entier supérieur ou égal à 2, peut être écrit comme somme de trois fractions unitaires, c'est-à-dire qu'il existe trois entiers naturels non nuls et tels que : Louis Mordell a montré que pour la conjecture est vraie.
  • 수론에서 1948년, 에르되시 팔과 (Ernst G. Straus)가 추측에 사용한 공식이다. 에르되시-스트라우스 추측(Erdős–Straus conjecture)이라고 한다. 정수에 대해서 n ≥ 2일때, 자연수 x, y, z의 해가 언제나 존재한다라고하는 것에 대한 추측이다. 예로, n = 5는 다음과 같은 2개의 해가 존재한다. 2013년, 테렌스 타오가 크리스티안 엘숄츠(Christian Elsholtz)와 함께 이 문제에대한 추측상의 출현 수 세기에 대한 논문을 발표했다. 수학의 미해결 문제이다. 또한 이것은 이라는 피타고라스의 정리의 연장선상에 있는 이라는 디오판토스의 방정식의 분수형태의 변형과 관계있다.
  • Het vermoeden van Erdős-Straus is een nog niet bewezen vermoeden uit de getaltheorie dat stelt dat door welk getal groter dan 1 je 4 ook deelt, het quotiënt altijd de som van drie stambreuken is. Paul Erdős en stelden het vermoeden op in 1948. Het is een van de vele vermoedens van Erdős. Formeel luidt het vermoeden:voor iedere gehele geldt dat er getallen zijn, zo dat
  • Inom talteori är Erdős–Straus förmodan en förmodan som säger att för alla heltal n ≥ 2 kan talet 4/n skrivas som summan av reciprokerna av tre positiva heltal. Paul Erdős och formulerade förmodandet år 1948.
  • Гипотеза Эрдёша — Штрауса — теоретико-числовая гипотеза, согласно которой для всех целых чисел рациональное число может быть представлено в виде суммы трёх аликвотных дробей (дробей с единицей в числителе), то есть существует три положительных целых числа , и , таких что: . Сформулирована в 1948 году Палом Эрдёшом и Эрнстом Штраусом. Перебором на компьютере проверено выполнение гипотезы для всех чисел вплоть до , но доказательство для всех остаётся по состоянию на 2015 год открытой проблемой.
  • 歐德斯-史特勞斯猜想(Erdős–Straus conjecture),簡稱歐德斯猜想,是由匈牙利犹太数学家保罗·埃尔德什與德裔美國數學家於1948年共同提出的數論猜想,其陳述为: 对于任何一个大于1的整数,都有 。其中, , 为正整数。 例如,若n = 1801,則存在一組 x = 451、y = 295364、z = 3249004 的解,使得 在基本式子中,只需考慮 n = p 為素數的情況,因為若 成立,則對於大於 1 的整數 m 也會成立。 計算機已經驗證到 n ≤ 1014 的情況,但此猜想還是有待證明。
  • In number theory, the Erdős–Straus conjecture states that for all integers n ≥ 2, the rational number 4/n can be expressed as the sum of three positive unit fractions. Paul Erdős and Ernst G. Straus formulated the conjecture in 1948. It is one of many conjectures by Erdős. The restriction that the three unit fractions be positive is essential to the difficulty of the problem, for if negative values were allowed the problem could always be solved.
  • La congettura di Erdős-Straus afferma che per ogni intero , il numero razionale 4/n si può scrivere come somma di tre frazioni unitarie, ossia esistono tre interi positivi , e tali che La somma di queste frazioni unitarie è una rappresentazione come frazione egiziana del numero 4/n. Ad esempio, per n = 1801, esiste una soluzione con x = 451, y = 295364 e z = 3249004: Paul Erdős e formularono la congettura nel 1948 (vedi, ad esempio, Elsholtz) ma il primo riferimento divulgato sembra essere una pubblicazione di Erdős del 1950.
foaf:isPrimaryTopicOf
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git51 as of Sep 16 2020


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3319 as of Dec 29 2020, on Linux (x86_64-centos_6-linux-glibc2.12), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2021 OpenLink Software