About: Differential of the first kind     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Whole100003553, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FDifferential_of_the_first_kind

In mathematics, differential of the first kind is a traditional term used in the theories of Riemann surfaces (more generally, complex manifolds) and algebraic curves (more generally, algebraic varieties), for everywhere-regular differential 1-forms. Given a complex manifold M, a differential of the first kind ω is therefore the same thing as a 1-form that is everywhere holomorphic; on an algebraic variety V that is non-singular it would be a global section of the coherent sheaf Ω1 of Kähler differentials. In either case the definition has its origins in the theory of abelian integrals. h1,0.

AttributesValues
rdf:type
rdfs:label
  • Differential of the first kind (en)
  • Абелев дифференциал (ru)
  • Диференціал Абеля (uk)
rdfs:comment
  • А́белев дифференциа́л — голоморфный или мероморфный дифференциал на компактной, или замкнутой, римановой поверхности . Пусть — род поверхности — циклы канонического базиса гомологий . В зависимости от характера особенностей различают Абелев дифференциал трёх родов: I, II и III, причём имеют место строгие включения: . (ru)
  • In mathematics, differential of the first kind is a traditional term used in the theories of Riemann surfaces (more generally, complex manifolds) and algebraic curves (more generally, algebraic varieties), for everywhere-regular differential 1-forms. Given a complex manifold M, a differential of the first kind ω is therefore the same thing as a 1-form that is everywhere holomorphic; on an algebraic variety V that is non-singular it would be a global section of the coherent sheaf Ω1 of Kähler differentials. In either case the definition has its origins in the theory of abelian integrals. h1,0. (en)
  • Абеля диференціал — голоморфний, або мероморфний диференціал на компактній, або замкнутій поверхні Рімана S. Нехай g — рід поверхні S; a1b1a2b2..agbg — цикли канонічної бази S. В залежності від характеру особливостей розрізняють диференціали Абеля трьох типів: I, II, III причому мають місце строгі включення: . Диференціал Абеля І-го роду — це голоморфні всюди на S диференціали 1-го порядку, котрі в околі U кожної точки мають вигляд , де — локальна уніформізуюча змінна в U, , а p(z) — голоморфна, або регулярна аналітична функція на U. Додавання і множення диференціалів Абеля визначаються звичайними правилами(див. диференціал). (uk)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
id
  • Abelian_differential (en)
title
  • Abelian differential (en)
has abstract
  • In mathematics, differential of the first kind is a traditional term used in the theories of Riemann surfaces (more generally, complex manifolds) and algebraic curves (more generally, algebraic varieties), for everywhere-regular differential 1-forms. Given a complex manifold M, a differential of the first kind ω is therefore the same thing as a 1-form that is everywhere holomorphic; on an algebraic variety V that is non-singular it would be a global section of the coherent sheaf Ω1 of Kähler differentials. In either case the definition has its origins in the theory of abelian integrals. The dimension of the space of differentials of the first kind, by means of this identification, is the Hodge number h1,0. The differentials of the first kind, when integrated along paths, give rise to integrals that generalise the elliptic integrals to all curves over the complex numbers. They include for example the hyperelliptic integrals of type where Q is a square-free polynomial of any given degree > 4. The allowable power k has to be determined by analysis of the possible pole at the point at infinity on the corresponding hyperelliptic curve. When this is done, one finds that the condition is k ≤ g − 1, or in other words, k at most 1 for degree of Q 5 or 6, at most 2 for degree 7 or 8, and so on (as g = [(1+ deg Q)/2]). Quite generally, as this example illustrates, for a compact Riemann surface or algebraic curve, the Hodge number is the genus g. For the case of algebraic surfaces, this is the quantity known classically as the irregularity q. It is also, in general, the dimension of the Albanese variety, which takes the place of the Jacobian variety. (en)
  • А́белев дифференциа́л — голоморфный или мероморфный дифференциал на компактной, или замкнутой, римановой поверхности . Пусть — род поверхности — циклы канонического базиса гомологий . В зависимости от характера особенностей различают Абелев дифференциал трёх родов: I, II и III, причём имеют место строгие включения: . (ru)
  • Абеля диференціал — голоморфний, або мероморфний диференціал на компактній, або замкнутій поверхні Рімана S. Нехай g — рід поверхні S; a1b1a2b2..agbg — цикли канонічної бази S. В залежності від характеру особливостей розрізняють диференціали Абеля трьох типів: I, II, III причому мають місце строгі включення: . Диференціал Абеля І-го роду — це голоморфні всюди на S диференціали 1-го порядку, котрі в околі U кожної точки мають вигляд , де — локальна уніформізуюча змінна в U, , а p(z) — голоморфна, або регулярна аналітична функція на U. Додавання і множення диференціалів Абеля визначаються звичайними правилами(див. диференціал). Диференціали Абеля І роду формують векторний простір розмірності g. Після введення скалярного добутку , де — зовнішній добуток на зірково спряжений диференціал , перетворюється в Гільбертів простір. Нехай — А- і В- періоди другого роду диференціала Абеля. І роду , тобто інтеграли . (1) Тоді справедливе наступне співвідношення: Нехай — періоди другого роду диференціала Абеля І-го роду , то . (2) Співвідношення (1) і (2) називають білінійними відношеннями Рімана для диференціала Абеля І роду. Канонічна база диференціала Абеля І роду, тобто канонічна база простору , вибирається таким чином, щоб , де — символ Кронекера. При цьому матриця , B-періодів симетрична, а матриця уявних частин додатно визначена. Диференціал Абеля І роду, у якого всі А- або В- періоди тотожно рівні нулю рівний нулю. Якщо всі періоди диференціала Абеля І роду дійсні, то . Диференціали Абеля ІІ і ІІІ роду відносяться до мероморфних диференціалів, тобто до таких аналітичних диференціалів, котрі мають на S не більш ніж скінченну множину особливостей типу полюсів з локальним представленням , (3) де f(z) — регулярна функція, n — порядок полюсу(якщо ), a-n — лишок в даному полюсі. При n=1 полюс називається простим. Диференціал Абеля ІІ роду — це мероморфні диференціали, в яких всі лишки дорівнюють нулю. Тобто їхнє локальне представлення має такий вигляд: . Диференціал Абеля ІІІ роду — це диференціал Абеля довільного вигляду. Якщо — довільний диференціал Абеля з А-періодами , то диференціал Абеля має нульові А-періоди і називається нормованим. Якщо P1 i P2 — довільні точки S, то можна побудувати диференціал Абеля з особливостями в P1 і в P2, який називається нормальним диференціалом Абеля ІІІ роду. Нехай — довільний диференціал Абеля з лишками в точках відповідно, причому . Якщо така довільна точка на S то можна представити у вигляді лінійної комбінації нормованого диференціала Абеля ІІ роду , скінченного числа нормальних диференціалів Абеля і базисних диференціалів Абеля І роду : . Нехай — диференціал Абеля ІІІ роду, що має лише прості полюси, з лишками в точках , а — довільний диференціал Абеля І роду; причому цикли не проходять через полюси . Нехай точка не лежить на циклах і , а — шлях від до . Тоді маємо білінійні співвідношення для диференціал Абеля І і ІІІ роду: . Аналогічні співвідношення існують і між диференціалами Абеля І і ІІ роду. Довільний диференціал Абеля ІІІ роду, окрім А- і В- періодів (циклічних), має ще полярні періоди виду вздовж циклів, гомологічних нулю, але таких, що охоплюють полюси . Таким чином для довільного циклу маємо: де — цілі числа. (uk)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (62 GB total memory, 54 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software