About: Dense set     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FDense_set

In topology and related areas of mathematics, a subset A of a topological space X is called dense (in X) if every point x in X either belongs to A or is a limit point of A; that is, the closure of A is constituting the whole set X. Informally, for every point in X, the point is either in A or arbitrarily "close" to a member of A — for instance, the rational numbers are a dense subset of the real numbers because every real number either is a rational number or has a rational number arbitrarily close to it (see Diophantine approximation).

AttributesValues
rdfs:label
  • مجموعة كثيفة
  • Conjunt dens
  • Hustá množina
  • Dichte Teilmenge
  • Dense set
  • Densa aro
  • Conjunto denso
  • Partie dense
  • 稠密集合
  • Insieme denso
  • 조밀 집합
  • Zbiór gęsty
  • Conjunto denso
  • Плотное множество
  • Tät mängd
  • Щільна множина
  • 稠密集
rdfs:comment
  • المجموعة الكثيفة (بالإنجليزية:Dense set)، هي خاصية طوبولوجية تكون فيها مجموعة كثيفة داخل مجموعة إذا كانت ضمن وإذا كان كل عنصر من إما منتميا ل أو يمثل (Limit point) ل . بمعنى أن تمكن من حصر (بالمعنى الجبري الطوبولوجي) جميع عناصر .
  • V topologii a příbuzných odvětvích matematiky se podmnožina A topologického prostoru X označuje jako hustá v X (lze také říci, že A je hustou podmnožinou X), pokud uzávěr A je celý prostor X. Ekvivalentně, A má neprázdný průnik s každou neprázdnou otevřenou podmnožinou prostoru X. Je důležité si uvědomit, že pojem hustoty je definován jako relativní. To znamená, že není možné vynechat specifikaci prostoru X, v němž je daná množina A hustá. V matematické hantýrce se sice někdy tento prostor nezmiňuje, v tom případě však bývá v konkrétním kontextu zřejmé, o jaký prostor se jedná.
  • Sigui un espai topològic; és un conjunt dens a si i només si , és a dir, la clausura del conjunt és tot l'espai. Es compleix que les següents proposicions per són totes equivalents: 1. * és dens a 2. * tancat 3. *
  • Sea un espacio topológico, se dice que es un conjunto denso en si y solamente si , es decir, la clausura topológica del conjunto es todo el espacio. Se cumple que las siguientes proposiciones para son todas equivalentes: 1. * es denso en 2. * cerrado 3. *
  • En topologie, une partie dense d'un espace topologique est un sous-ensemble permettant d'approcher tous les éléments de l'espace englobant. La notion s'oppose ainsi à celle de partie nulle part dense. La densité d'une partie permet parfois d'étendre la démonstration d'une propriété ou la définition d'une application par continuité.
  • 数学の位相空間論周辺分野において、位相空間 X の部分集合 A が X において稠密(ちゅうみつ、英: dense)であるとは、X の各点 x が、A の元であるか、さもなくば A の集積点(limit point)であるときにいう。イメージで言えば、X の各点が A の中か、さもなくば A の元の「どれほどでも近く」にあるということを表している。例えば、任意の実数は、有理数であるか、さもなくばどれほどでも近い有理数をとることができる(ディオファントス近似も参照)。
  • In matematica, un sottoinsieme di uno spazio topologico è denso nello spazio topologico se ogni elemento dello spazio appartiene all'insieme o ne è un punto di accumulazione. Nel caso di un insieme di numeri reali, ad esempio, per ogni coppia di numeri distinti vi è sempre un elemento dell'insieme compreso tra i due. I numeri razionali e i numeri irrazionali sono due insiemi densi, mentre i numeri interi non lo sono.
  • 일반위상수학에서, 조밀 집합(稠密集合, 영어: dense set)은 어떤 공간을 ‘조밀하게’ 채우는 부분 집합이다. 즉, 공간 속의 임의의 점을, 조밀 집합에 속하는 점들의 그물의 극한으로 나타낼 수 있다.
  • Zbiór gęsty – zbiór, którego domknięcie jest całą przestrzenią. Równoważnie, zbiór jest gęsty, jeżeli ma z każdym niepustym zbiorem otwartym co najmniej jeden punkt wspólny. W przestrzeni metrycznej zbiór nazywamy gęstym jeśli dla każdego i liczby istnieje element taki, że tzn. dowolnie blisko każdego elementu znajduje się jakiś element z Przestrzeń topologiczną, która zawiera przeliczalny zbiór gęsty nazywa się przestrzenią ośrodkową. W przestrzeni topologicznej jej podzbiór nazywamy zbiorem nigdziegęstym jeśli nie jest gęsty w żadnym niepustym zbiorze otwartym.
  • Em topologia, um subconjunto S de um espaço topológico X diz-se denso em X, se o fecho de S é igual a X, equivalentemente, S é denso em X se qualquer vizinhança de qualquer ponto de X contiver um elemento de S.
  • Пло́тное мно́жество — подмножество пространства, точками которого можно сколь угодно хорошо приблизить любую точку объемлющего пространства. Формально говоря, плотно в , если всякая окрестность любой точки из содержит элемент из .
  • En tät mängd är inom topologi och matematisk analys en delmängd till ett topologiskt rum så att i varje omgivning till varje element i finns ett element ur . Ekvivalent uttryckt är en delmängd tät i om är den minsta slutna mängd som innehåller hela , dvs det slutna höljet till är som även kan användas som villkor för att är tät i om är ett metriskt rum.
  • 在拓扑学及数学的其它相关领域,给定拓扑空间X及其子集A,如果对于X中任一点x,x的任一邻域同A的交集不为空,则A称为在X中稠密。直观上,如果X中的任一点x可以被A中的点很好的逼近,则称A在X中稠密。 等价地说,A在X中稠密当且仅当X中唯一包含A的闭集是X自己。或者说,A的闭包是X,又或者A的补集的内部是空集。
  • В топології підмножина A топологічного простору X називається щільною в X, якщо будь-який окіл довільної точки містить хоча б один елемент множини A. Якщо дана властивість виконується не для всіх точок простору X, а для деякої його підмножини B, то множина A називається щільною в B.
  • Im mathematischen Fachgebiet Topologie ist eine dichte Teilmenge eines metrischen oder topologischen Raumes eine Teilmenge dieses Raumes mit besonderen Eigenschaften. Der Begriff dichte Teilmenge wird in seiner allgemeinen Form in der Topologie definiert. Er wird auch in vielen anderen Teildisziplinen der Mathematik, etwa der Analysis, der Funktionalanalysis und der Numerik angewandt, zum Beispiel bei der Approximation von stetigen Funktionen durch Polynome.
  • En topologio kaj rilataj areoj de matematiko, subaro A de topologia spaco X estas nomata densa (en X) se, ĉiu punkto en X povas esti "bone-aproksimita" per punktoj en A. Formale, A estas densa en X se por ĉiu punkto x en X, ĉiu najbareco de x enhavas almenaŭ unu punkton de A. Ekvivalente, A estas densa en X se la sola fermita subaro de X enhavanta A-on estas X mem. Ĉi tiu povas ankaŭ esti esprimita per tio ke la fermaĵo de A estas X, aŭ ke la de la komplemento de A estas malplena.
  • In topology and related areas of mathematics, a subset A of a topological space X is called dense (in X) if every point x in X either belongs to A or is a limit point of A; that is, the closure of A is constituting the whole set X. Informally, for every point in X, the point is either in A or arbitrarily "close" to a member of A — for instance, the rational numbers are a dense subset of the real numbers because every real number either is a rational number or has a rational number arbitrarily close to it (see Diophantine approximation).
foaf:isPrimaryTopicOf
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git51 as of Sep 16 2020


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3319 as of Dec 29 2020, on Linux (x86_64-centos_6-linux-glibc2.12), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2021 OpenLink Software