About: Cumulative distribution function     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Distribution105729036, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FCumulative_distribution_function

In probability theory and statistics, the cumulative distribution function (CDF) of a real-valued random variable , or just distribution function of , evaluated at , is the probability that will take a value less than or equal to . In the case of a scalar continuous distribution, it gives the area under the probability density function from minus infinity to . Cumulative distribution functions are also used to specify the distribution of multivariate random variables.

AttributesValues
rdf:type
rdfs:label
  • Distribuční funkce
  • Verteilungsfunktion
  • Συνάρτηση κατανομής
  • Cumulative distribution function
  • Distribuo
  • Función de distribución
  • Banaketa-funtzio
  • Funzione di ripartizione
  • 累積分布関数
  • 누적 분포 함수
  • Verdelingsfunctie
  • Dystrybuanta
  • Função distribuição acumulada
  • Функция распределения
  • Kumulativ fördelningsfunktion
  • Функція розподілу ймовірностей
  • 累积分布函数
rdfs:comment
  • Distribuční funkce, funkce rozdělení (pravděpodobnosti) nebo (spíše lidově) (zleva) kumulovaná pravděpodobnost (anglicky Cumulative Distribution Function, CDF) je funkce, která udává pravděpodobnost, že hodnota náhodné proměnné je menší než zadaná hodnota (nerovnost může být i neostrá). Distribuční funkce jednoznačně určuje rozdělení pravděpodobnosti a ve spojitém případě je úzce spjatá s funkcí hustoty pravděpodobnosti.
  • Έστω ένας χώρος πιθανότητας και μια πραγματική τυχαία μεταβλητή πάνω σε αυτόν. Η συνάρτηση με ονομάζεται συνάρτηση κατανομής (σ.κ., ή αθροιστική συνάρτηση κατανομής, α.σ.κ.) της τυχαίας μεταβλητής. Για μια διακριτή τυχαία μεταβλητή που παίρνει τιμές x1, x2, ... με πιθανότητα p(xi) = P(Χ=xi) η αντίστοιχη συνάρτηση κατανομής ισούται με Για μια συνεχή τυχαία μεταβλητή με συνάρτηση πυκνότητας πιθανότητας f η αντίστοιχη συνάρτηση κατανομής ισούται με
  • In probability theory and statistics, the cumulative distribution function (CDF) of a real-valued random variable , or just distribution function of , evaluated at , is the probability that will take a value less than or equal to . In the case of a scalar continuous distribution, it gives the area under the probability density function from minus infinity to . Cumulative distribution functions are also used to specify the distribution of multivariate random variables.
  • Probabilitate-teorian, banaketa-funtzioa balio batetik beherako probabilitatea (balio hori barne) ematen duen funtzio bat da. Probabilitate-funtzioekin (zorizko eta dentsitate-funtzioarekin estu loturik dago: adibidez, dentsitate-funtzio batean, banaketa funtzioak x balio baterainoko azalera ematen du. Horrela, dentsitate-funtziotik (eta baita ere probabilitate-funtziotik zorizko aldagai diskretuetan) banaketa-funtzioa eratortzen da eta alderantziz. Matematikoki honela definitzen da, X zorizko aldagai baterako: Honela kalkulatzen dira probabilitateak banaketa-funtzioarekin:
  • In statistica e teoria della probabilità, la funzione di ripartizione (o funzione cumulativa) è una funzione di variabile reale che racchiude le informazioni su un fenomeno (un insieme di dati, un evento casuale) riguardanti la sua presenza o la sua distribuzione prima o dopo un certo punto.
  • 累積分布関数(るいせきぶんぷかんすう、英: cumulative distribution function, CDF)や分布関数(ぶんぷかんすう、英: distribution function)とは、確率論において、実数値確率変数 X が x 以下になる確率の関数のこと。連続型確率変数では、負の無限大から x まで確率密度関数を定積分したもの。 累積分布関数は同時確率分布でも条件付き確率分布でも定義される。
  • 확률론에서, 누적 분포 함수(累積分布函數, 영어: cumulative distribution function, 약자 cdf)는 주어진 확률 변수가 특정 값보다 작거나 같은 확률을 나타내는 함수이다.
  • Dystrybuanta (fr. „rozdzielać, rozdawać” z łac. distributio zob. dystrybucja) – funkcja rzeczywista jednoznacznie wyznaczająca rozkład prawdopodobieństwa (tj. miarę probabilistyczną określoną na σ-ciele borelowskich podzbiorów prostej), a więc zawierająca wszystkie informacje o tym rozkładzie. Dystrybuanty są efektywnym narzędziem badania prawdopodobieństwa, ponieważ są obiektami prostszymi niż rozkłady prawdopodobieństwa. W statystyce dystrybuanta rozkładu próby zwana jest dystrybuantą empiryczną i jest blisko związana z pojęciem rangi.
  • Фу́нкция распределе́ния в теории вероятностей — функция, характеризующая распределение случайной величины или случайного вектора; вероятность того, что случайная величина X примет значение, меньшее или равное х, где х — произвольное действительное число. При соблюдении известных условий (см. ) полностью определяет случайную величину.
  • Функція розподілу ймовірностей — В теорії ймовірностей це функція, яка повністю описує розподіл ймовірностей випадкової величини. Нехай — ймовірнісний простір, в якому — множина елементарних подій, — сукупність підмножин , що утворюють -алгебру, множини з називаються випадковими подіями, — міра на , що задовольняє умову . Функція , визначена рівністю , називається функцією розподілу ймовірностей або кумулятивною функцією розподілу ймовірностей випадкової величини ξ. Вираз в правій частині рівності є ймовірністю того, що випадкова величина набуває значень менших або рівних .
  • 累积分布函数,又叫分布函数,是概率密度函數的积分,能完整描述一個實随机变量X的概率分佈。一般以大寫“CDF”(Cumulative Distribution Function)标记。 對於所有實數x ,累积分布函数定義如下:
  • Die Verteilungsfunktion ist eine spezielle reelle Funktion in der Stochastik und ein zentrales Konzept bei der Untersuchung von Wahrscheinlichkeitsverteilungen auf den reellen Zahlen. Jeder Wahrscheinlichkeitsverteilung und jeder reellwertigen Zufallsvariable kann eine Verteilungsfunktion zugeordnet werden. Anschaulich entspricht dabei der Wert der Verteilungsfunktion an der Stelle der Wahrscheinlichkeit, dass die zugehörige Zufallsvariable einen Wert kleiner oder gleich annimmt. Ist beispielsweise die Verteilung der Schuhgrößen in Europa gegeben, so entspricht der Wert der entsprechenden Verteilungsfunktion bei 45 der Wahrscheinlichkeit, dass ein beliebiger Europäer die Schuhgröße 45 oder kleiner besitzt.
  • Distribuo (distribu(ant)a funkcio) de hazarda variablo X estas ofte signifata per FX kaj estas difinata kial: alinome estas probableco, ke hazarda variablo X havos valoron malpli aŭ egala x. Ofte ĝi estas difinata kiel funkcio kiu plenumebla sub kondiĉo sed kun "<" anstataŭ "≤". distribuanta funkcio difinas probabla distribuo – du variabloj kiuj havas saman distribuo havas ankaŭ saman probabla distribuo.Tute, distribuo estas mezura funkcio kiu havas valorojn en , almenaŭ ofte oni uzas ankaŭ mallongan signifon F(x)=P(X≤x).
  • En la teoría de la probabilidad y en estadística, la función de distribución acumulada (FDA, designada también a veces simplemente como FD) o función de probabilidad acumulada asociada a una variable aleatoria real: X (mayúscula) sujeta a cierta ley de distribución de probabilidad, es una función matemática de la variable real: x (minúscula); que describe la probabilidad de que X tenga un valor menor o igual que x .Intuitivamente, asumiendo la función f como la ley de distribución de probabilidad, la FDA sería la función con la recta real como dominio, con imagen del área hasta aquí de la función f, siendo aquí el valor x para la variable aleatoria real X.La FDA asocia a cada valor x, la probabilidad del evento: «la variable X toma valores menores o iguales a x».El concepto de FDA puede ge
  • In de kansrekening en de statistiek is de verdelingsfunctie, ook aangeduid als cumulatieve kansverdelingsfunctie of cumulatieve distributiefunctie (cdf), van een reëelwaardige stochastische variabele de functie waarmee de verdeling van de stochastische variabele beschreven of vastgelegd wordt. De verdelingsfunctie bestaat altijd en voor elke gebeurtenis die de stochastische variabele betreft, kan daarmee de kans op die gebeurtenis bepaald worden. Populair gezegd worden alle kansen betreffende de stochastische variabele bepaald door de verdelingsfunctie.
  • Em teoria da probabilidade, a função distribuição acumulada (fda) ou simplesmente função distribuição, descreve completamente a distribuição da probabilidade de uma variável aleatória de valor real X. Para cada número real x, a fda é dada por: A probabilidade de que X se situe num intervalo ]a, b] (aberto em a e fechado em b) é F(b) − F(a) se a ≤ b. É convenção usar um F maiúsculo para a fda, em contraste com o f minúsculo usado para a função densidade da probabilidade e função massa de probabilidade. Para uma variável aleatória contínua:
  • Den kumulativa fördelningsfunktionen beskriver en sannolikhetsfördelning för en slumpvariabel inom den matematiska statistiken. För en slumpvariabel X definierad på sannolikhetsrummet definieras den kumulativa fördelningsfunktionen FX(x) beskriver sannolikheten att X antar ett värde mindre än eller lika med x. Den kumulativa fördelningsfunktionen är monotont växande och högerkontinuerlig. Den har alltid egenskaperna * * * För en kontinuerlig slumpvariabel är F en kontinuerlig funktion. Om F dessutom är så gäller
foaf:depiction
  • External Image
foaf:isPrimaryTopicOf
thumbnail
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git51 as of Sep 16 2020


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3319 as of Dec 29 2020, on Linux (x86_64-centos_6-linux-glibc2.12), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2021 OpenLink Software