About: Cryomicroscopy     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/c/3KetZ3sFpx

Cryomicroscopy is a technique in which a microscope is equipped in such a fashion that the object intended to be inspected can be cooled to below room temperature. Technically, cryomicroscopy implies compatibility between a cryostat and a microscope. Most cryostats make use of a cryogenic fluid such as liquid helium or liquid nitrogen. There exists two common motivations for performing a cryomicroscopy. One is to improve upon the process of performing a standard microscopy. Cryogenic electron microscopy, for example, enables the studying of proteins with limited radiation damage. In this case, the protein structure may not change with temperature, but the cryogenic environment enables the improvement of the electron microscopy process. Another motivation for performing a cryomicroscopy is

AttributesValues
rdfs:label
  • Cryomicroscopy (en)
rdfs:comment
  • Cryomicroscopy is a technique in which a microscope is equipped in such a fashion that the object intended to be inspected can be cooled to below room temperature. Technically, cryomicroscopy implies compatibility between a cryostat and a microscope. Most cryostats make use of a cryogenic fluid such as liquid helium or liquid nitrogen. There exists two common motivations for performing a cryomicroscopy. One is to improve upon the process of performing a standard microscopy. Cryogenic electron microscopy, for example, enables the studying of proteins with limited radiation damage. In this case, the protein structure may not change with temperature, but the cryogenic environment enables the improvement of the electron microscopy process. Another motivation for performing a cryomicroscopy is (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • Cryomicroscopy is a technique in which a microscope is equipped in such a fashion that the object intended to be inspected can be cooled to below room temperature. Technically, cryomicroscopy implies compatibility between a cryostat and a microscope. Most cryostats make use of a cryogenic fluid such as liquid helium or liquid nitrogen. There exists two common motivations for performing a cryomicroscopy. One is to improve upon the process of performing a standard microscopy. Cryogenic electron microscopy, for example, enables the studying of proteins with limited radiation damage. In this case, the protein structure may not change with temperature, but the cryogenic environment enables the improvement of the electron microscopy process. Another motivation for performing a cryomicroscopy is to apply the microscopy to a low-temperature phenomenon. A scanning tunnelling microscopy under a cryogenic environment, for example, allows for the studying of superconductivity, which does not exist at room temperature. (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Dec 5 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 58 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software