About: Coordinate system     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FCoordinate_system

In geometry, a coordinate system is a system that uses one or more numbers, or coordinates, to uniquely determine the position of the points or other geometric elements on a manifold such as Euclidean space. The order of the coordinates is significant, and they are sometimes identified by their position in an ordered tuple and sometimes by a letter, as in "the x-coordinate". The coordinates are taken to be real numbers in elementary mathematics, but may be complex numbers or elements of a more abstract system such as a commutative ring. The use of a coordinate system allows problems in geometry to be translated into problems about numbers and vice versa; this is the basis of analytic geometry.

AttributesValues
rdf:type
rdfs:label
  • نظام إحداثي
  • Sistema de coordenades
  • Soustava souřadnic
  • Koordinatensystem
  • Σύστημα αναφοράς
  • Coordinate system
  • Koordinatsistemo
  • Sistema de coordenadas
  • Koordenatu sistema
  • Système de coordonnées
  • Sistem koordinat
  • 座標
  • Sistema di coordinate
  • 좌표계
  • Coördinatenstelsel
  • Układ współrzędnych
  • Sistema de coordenadas
  • Система координат
  • Koordinatsystem
  • Система координат
  • 坐標系
rdfs:comment
  • في الهندسة الرياضية، النظام الإحداثي (بالإنجليزية: Coordinate system) هو نظام يمكن من تعيين عدد n ما من الأعداد أو الكميات لكل نقطة في فضاء ذي n بعد. تكون تلك الكميات بشكل عام أعدادا حقيقية، ولكن قد تكون أعدادا عقدية في بعض الحالات. من أشهر الأمثلة على أنظمة الإحداثيات هو نظام الإحداثيات الديكارتية.
  • In geometry, a coordinate system is a system that uses one or more numbers, or coordinates, to uniquely determine the position of the points or other geometric elements on a manifold such as Euclidean space. The order of the coordinates is significant, and they are sometimes identified by their position in an ordered tuple and sometimes by a letter, as in "the x-coordinate". The coordinates are taken to be real numbers in elementary mathematics, but may be complex numbers or elements of a more abstract system such as a commutative ring. The use of a coordinate system allows problems in geometry to be translated into problems about numbers and vice versa; this is the basis of analytic geometry.
  • Ein Koordinatensystem dient zur eindeutigen Bezeichnung der Position von Punkten und Objekten in einem geometrischen Raum.
  • Koordenatu sistema bat puntu batek espazio euklideo edo edozein duen leku zehatza definitzeko balio duten balore eta puntu bilduma bat da. Fisikan normalki koordenatu sistema erabiltzen da. Erreferentzia sistema bat erreferentzia puntu edo jatorri batek definitzen du eta bere oinarri bektorial , koordenatuen ardatzak definituz.
  • En mathématiques, un système de coordonnées permet de faire correspondre à chaque point d'un espace à N dimensions, un (et un seul) N-uplet de scalaires. Dans beaucoup de cas, les scalaires considérés sont des nombres réels, mais il est possible d'utiliser des nombres complexes ou des éléments d'un corps commutatif quelconque. Plus généralement, les coordonnées peuvent provenir d'un anneau ou d'une autre structure algébrique apparentée. On considère que l'espace existe en lui-même indépendamment du choix d'un système de coordonnées particulier.
  • Dalam geometri, sistem koordinat adalah suatu sistem yang menggunakan satu atau lebih bilangan, atau koordinat, untuk secara unik menentukan posisi suatu titik atau unsur geometris lain pada manifold seperti ruang Euklides. Urutan koordinat adalah signifikan, dan mereka kadang-kadang diidentifikasi oleh posisi mereka dalam dan kadang-kadang dengan huruf, seperti dalam "x-coordinate". Koordinat diambil untuk menjadi bilangan real dalam , tetapi mungkin bilangan kompleks atau elemen-elemen dari sistem yang lebih abstrak seperti sebuah . Penggunaan sistem koordinat memungkinkan masalah dalam geometri untuk diterjemahkan ke dalam masalah-masalah tentang angka dan sebaliknya; ini adalah dasar dari geometri analitis.
  • Si definisce sistema di coordinate un sistema di riferimento basato su coordinate, le quali individuano la posizione di un oggetto in qualche spazio. A seconda del numero di coordinate usate, si può parlare di: * sistema di riferimento unidimensionale o monodimensionale; * sistemi di riferimento bidimensionale; * sistemi di riferimento tridimensionale.
  • 幾何学において、座標(ざひょう)とは、点の位置を指定するために与えられる数の組 (coordinates)、あるいはその各数 (coordinate) のことであり、その組から点の位置を定める方法を与えるものが座標系(ざひょうけい、英: coordinate system)である。例えば、世界地図にある緯度と経度のようなもの。座標系と座標が与えられれば、点はただ一つに定まる。 座標は点により定まる関数の組であって、一つの空間に複数の座標系が重複して定義されていることがある。例えば、多様体は各点の近くでユークリッド空間と同様の座標系が貼り付けられているが、ほとんどの場合、一つの座標系の座標だけを考えていたのでは全ての点を特定することができない。このような場合は、たくさんの座標系を貼り付けて、重なる部分での読み替えの方法を記した地図帳(アトラス、atlas)を用意することもある。 地球上の位置を表す地理座標や、天体に対して天球上の位置を表す天球座標がある。
  • 좌표계(座標系, coordinate system) 혹은 자리표계는 유클리드 공간과 같은 다양체의 점이나 기타 기하학적 요소를 고유하게 결정하기 위해 하나 이상의 숫자인 좌표를 사용하는 체계이다. 스칼라 튜플을 이용해 n차원 공간의 각 지점을 표현하는 방법을 말한다. 여기서 스칼라는 보통 실수, 경우에 따라서는 복소수나 다른 일반적인 환(ring)의 원소를 말하기도 한다. 복잡한 우주에서 스칼라는 우주 전체에 대해 효과적인 좌표계를 산출하지 못하기도 한다. 이 경우 그래프로 이 좌표계를 우주 지도 책에 함께 수집하여 둔다. 좌표를 나타내는 방법 중 하나인 직교좌표계는 프랑스의 철학자이자 수학자인 르네 데카르트가 발명했다. 그는 천장에 붙어 있는 파리의 위치를 나타내는 방법에 대해 고민하다가 직교좌표계를 발명해 냈다고 한다.
  • Door een coördinatenstelsel wordt een vlak of een ruimte zo ingedeeld, dat de plaats van ieder punt op dat vlak of in die ruimte uniek wordt bepaald door een stel getallen, coördinaten van dat punt genaamd.
  • 坐標系是數學或物理學用語,定義如下:对于一个n维系统,能够使每一个点和一组n个标量构成一一对应的系统。 坐標系可以用一個有序多元组表示一個點的位置。一般常用的坐標系,各維坐標的數字均為實數,但在高等數學中坐標的數字可能是複數,甚至是或是其他抽象代數中的元素(如交换环)。坐標系可以使幾何學的問題轉換為數字的問題,反之亦然,是解析幾何學的基礎。 在地理學中,描述地理位置時所用的經度及緯度構成了一種地理坐標系。在天文學中,描繪天體在天球上位置的多種坐標系統是天球坐標系。在物理學中,描述一系統在空間中運動的參考坐標系統則稱作參考系。
  • En geometria, un sistema de coordenades és un sistema que utilitza un o més números o coordenades, per determinar de forma única la posició d'un punt o d'un altre element geomètric. És un conjunt de valors que permeten definir unívocament la posició de qualsevol punt en l'espai respecte a un punt de referència. L'ús d'un sistema de coordenades permet que determinats problemes en geometria es tradueixin en problemes numèrics, i a l'inrevés, aquesta és la base de la geometria analítica.
  • Soustava souřadnic (též souřadnicová soustava či systém souřadnic) umožňuje jednoznačně popsat polohu bodu pomocí čísel jakožto souřadnic čili koordinát. Geometrické úlohy je pak možno řešit matematickými prostředky, což je základ analytické geometrie. Polohu bodu na přímce určuje jedno (reálné) číslo, v rovině dvě, v prostoru tři čísla atd. Obecně je k určení polohy bodu v n-rozměrném prostoru třeba n čísel, která tvoří uspořádané n-tice (čti entice), neboť na jejich pořadí záleží. Polohu přímky lze pak označit pomocí dvou bodů, polohu roviny pomocí tří bodů a podobně i pro další geometrické útvary.
  • Σύστημα συντεταγμένων είναι το σύνολο των παραδοχών και ορισμών που οριοθετούν ένα χώρο και αποσκοπούν στην περιγραφή της θέσης ενός αντικειμένου στο χώρο αυτό με αριθμητικές τιμές. Στην ουσία, ένα σύστημα συντεταγμένων είναι πάντα σχετικό ως προς κάποιο σταθερό σημείο και οριοθετείται με συγκεκριμένες παραδοχές που επιτρέπουν την υλοποίηση του. Τα διάφορα είδη Συστημάτων συντεταγμένων είναι: Αυτό το λήμμα γεωγραφίας χρειάζεται επέκταση. Βοηθήστε τη Βικιπαίδεια επεκτείνοντάς το!
  • Ĝenerale koordinatsistemo estas maniero bildigi spacon el opoj de nombroj.Tio eblas laŭ diversaj manieroj. La sistemo longituda-latituda uzata en geografio estas sistemo de sferaj koordinatoj; pliigante ĝin je tria koordinato, la alteco, oni povas per polusaj koordinatoj priskribi la situon de ĉiu punkto en nia universo (ignorante ties kurbecon). Alia speco estas karteziaj koordinatoj, kiuj baziĝas sur sistemo de aksoj reciproke ortaj kaj sin sekcantaj en unu punkto, la . En la matematiko la nocio koordinatsistemo estas bazo de la lineara algebro kaj ties nocio de vektora spaco.
  • En geometría, un sistema de coordenadas es un sistema que utiliza uno o más números (coordenadas) para determinar unívocamente la posición de un punto u objeto geométrico.​ El orden en que se escriben las coordenadas es significativo y a veces se las identifica por su posición en una tupla ordenada; también se las puede representar con letras, como por ejemplo «la coordenada-x». El estudio de los sistemas de coordenadas es objeto de la geometría analítica, permite formular los problemas geométricos de forma "numérica".​
  • Układ współrzędnych – odwzorowanie wzajemnie jednoznaczne przypisujące każdemu punktowi danej przestrzeni skończony ciąg (krotkę) liczb rzeczywistych zwanych współrzędnymi punktu. Do określenia układu współrzędnych potrzebne jest 1. * ustalenie punktu początkowego (O, ang origin), tzw. początek układu, 2. * ustalenie bazy wektorów przestrzeni , za pomocą których można wyrazić wektory wodzące punktów przestrzeni jako kombinacje liniowe wektorów bazy, tj. . W szczególności przyjęcie punktu początkowego oraz jednego wektora jako wektora jednostkowego na prostej tworzy tzw. oś liczbową.
  • Em matemática, um sistema de coordenadas é um sistema para se especificar uma ênupla de escalares a cada ponto num espaço n-dimensional. O espaço no qual é sobreposto o sistema de coordenadas não necessariamente precisa ter definida uma métrica, tal como no caso do espaço riemmaniano no contexto da relatividade. Os "escalares" em muitos casos são números reais mas, dependendo do contexto, também podem ser números complexos ou membros de outro corpo qualquer. De forma mais geral, as coordenadas podem por vezes ser retiradas de anéis ou outras estruturas algébricas semelhantes.
  • Систе́ма координа́т — комплекс определений, реализующий метод координат, то есть способ определять положение и перемещение точки или тела с помощью чисел или других символов. Совокупность чисел, определяющих положение конкретной точки, называется координатами этой точки. В математике координаты — совокупность чисел, сопоставленных точкам многообразия в некоторой карте определённого атласа. В географии координаты выбираются как (приближённо) сферическая система координат — широта, долгота и высота над известным общим уровнем (например, океана). См. Географические координаты.
  • Система координат — спосіб задання точок простору за допомогою чисел. Кількість чисел, необхідних для однозначного визначення будь-якої точки простору, визначає його вимірність. Обов'язковим елементом системи координат є початок координат — точка, від якої ведеться відлік відстаней. Іншим обов'язковим елементом є одиниця довжини, яка дозволяє відраховувати відстані. Всі точки одновимірного простору можна задати при обраному початку координат одним числом. Для двовимірного простору необхідні два числа, для тривимірного — три. Ці числа називають координатами.
  • Ett koordinatsystem inom matematiken är ett sätt att tilldela koordinater, en ordnad följd av tal, till en punkt eller vektor i ett rum. Antalet koordinatvärden som behövs är rummets dimension. Det vanligaste sättet att definiera koordinaterna för punkten är att bestämma ett antal basvektorer, lika många som antalet dimensioner i rummet. Om dessa basvektorer betecknas V1, V2 ... Vn är punkten och a1, a2 ... an kallas V:s koordinater vilket brukar skrivas som
differentFrom
rdfs:seeAlso
foaf:depiction
  • External Image
foaf:isPrimaryTopicOf
thumbnail
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git51 as of Sep 16 2020


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3319 as of Dec 29 2020, on Linux (x86_64-centos_6-linux-glibc2.12), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2021 OpenLink Software