About: Continuous spatial automaton     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Whole100003553, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FContinuous_spatial_automaton

Continuous spatial automata, unlike cellular automata, have a continuum of locations, while the state of a location still is any of a finite number of real numbers. Time can also be continuous, and in this case the state evolves according to differential equations. MacLennan [1] considers continuous spatial automata as a model of computation, and demonstrated that they can implement Turing-universality.

AttributesValues
rdf:type
rdfs:label
  • Continuous spatial automaton (en)
rdfs:comment
  • Continuous spatial automata, unlike cellular automata, have a continuum of locations, while the state of a location still is any of a finite number of real numbers. Time can also be continuous, and in this case the state evolves according to differential equations. MacLennan [1] considers continuous spatial automata as a model of computation, and demonstrated that they can implement Turing-universality. (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • Continuous spatial automata, unlike cellular automata, have a continuum of locations, while the state of a location still is any of a finite number of real numbers. Time can also be continuous, and in this case the state evolves according to differential equations. One important example is reaction–diffusion textures, differential equations proposed by Alan Turing to explain how chemical reactions could create the stripes on zebras and spots on leopards. When these are approximated by CA, such CAs often yield similar patterns. Another important example is neural fields, which are the continuum limit of neural networks where average firing rates evolve based on integro-differential equations. Such models demonstrate spatiotemporal pattern formation, localized states and travelling waves. They have been used as models for cortical memory states and visual hallucinations. MacLennan [1] considers continuous spatial automata as a model of computation, and demonstrated that they can implement Turing-universality. (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 67 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software