About: Complex multiplication of abelian varieties     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FComplex_multiplication_of_abelian_varieties

In mathematics, an abelian variety A defined over a field K is said to have CM-type if it has a large enough commutative subring in its endomorphism ring End(A). The terminology here is from complex multiplication theory, which was developed for elliptic curves in the nineteenth century. One of the major achievements in algebraic number theory and algebraic geometry of the twentieth century was to find the correct formulations of the corresponding theory for abelian varieties of dimension d > 1. The problem is at a deeper level of abstraction, because it is much harder to manipulate analytic functions of several complex variables.

AttributesValues
rdfs:label
  • Complex multiplication of abelian varieties (en)
  • Variété abélienne de type CM (fr)
  • CM-タイプのアーベル多様体 (ja)
rdfs:comment
  • In mathematics, an abelian variety A defined over a field K is said to have CM-type if it has a large enough commutative subring in its endomorphism ring End(A). The terminology here is from complex multiplication theory, which was developed for elliptic curves in the nineteenth century. One of the major achievements in algebraic number theory and algebraic geometry of the twentieth century was to find the correct formulations of the corresponding theory for abelian varieties of dimension d > 1. The problem is at a deeper level of abstraction, because it is much harder to manipulate analytic functions of several complex variables. (en)
  • En mathématiques, une variété abélienne A définie sur un corps commutatif K est dite de type CM si elle possède un sous-anneau commutatif suffisamment grand dans son anneau d'endomorphismes End(A). La terminologie ici est issue de la théorie de la multiplication complexe, qui fut développée pour les courbes elliptiques au XIXe siècle. Un des accomplissements majeurs du XXe siècle en théorie algébrique des nombres et en géométrie algébrique fut de trouver les formulations correctes de la théorie correspondante pour les variétés abéliennes de dimension d > 1. Le problème est d'un niveau plus profond d'abstraction, parce qu'il est plus difficile de manipuler les fonctions analytiques de plusieurs variables complexes. (fr)
  • 数学において体 K 上定義されたアーベル多様体 A がCM-タイプ(CM-type)であるとは、自己準同型環 End(A) の中で十分に大きな部分可換環を持つことをいう。この用語は虚数乗法 (complex multiplication) 論から来ていて、虚数乗法論は19世紀に楕円曲線の研究のため開発された。20世紀の代数的整数論と代数幾何学の主要な成果のひとつに、アーベル多様体の次元 d > 1 の理論の正しい定式化が発見されたことがある。この問題は、多変数複素函数論を使うことが非常に困難であるため、非常に抽象的である。 フォーマルな定義は、有理数体 Q と End(A) のテンソル積 は Z 上、次元 2d の可換部分環を含んでいることである。d = 1 のとき、このことは二次体以外にはありえなく、End(A) は虚二次体の(order)である。d > 1 に対しては、総実体の虚二次拡大であるCM体の場合が比較すべきに対象である。A が単純アーベル多様体ではないかもしれない(例えば、楕円曲線のカルテシアン積)ことを反映する他の他の場合もある。CM-タイプのアーベル多様体の別の名称は、十分に多くの虚数乗法を持つアーベル多様体である。 (ja)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • In mathematics, an abelian variety A defined over a field K is said to have CM-type if it has a large enough commutative subring in its endomorphism ring End(A). The terminology here is from complex multiplication theory, which was developed for elliptic curves in the nineteenth century. One of the major achievements in algebraic number theory and algebraic geometry of the twentieth century was to find the correct formulations of the corresponding theory for abelian varieties of dimension d > 1. The problem is at a deeper level of abstraction, because it is much harder to manipulate analytic functions of several complex variables. The formal definition is that the tensor product of End(A) with the rational number field Q, should contain a commutative subring of dimension 2d over Q. When d = 1 this can only be a quadratic field, and one recovers the cases where End(A) is an order in an imaginary quadratic field. For d > 1 there are comparable cases for CM-fields, the complex quadratic extensions of totally real fields. There are other cases that reflect that A may not be a simple abelian variety (it might be a cartesian product of elliptic curves, for example). Another name for abelian varieties of CM-type is abelian varieties with sufficiently many complex multiplications. It is known that if K is the complex numbers, then any such A has a field of definition which is in fact a number field. The possible types of endomorphism ring have been classified, as rings with involution (the Rosati involution), leading to a classification of CM-type abelian varieties. To construct such varieties in the same style as for elliptic curves, starting with a lattice Λ in Cd, one must take into account the Riemann relations of abelian variety theory. The CM-type is a description of the action of a (maximal) commutative subring L of EndQ(A) on the holomorphic tangent space of A at the identity element. Spectral theory of a simple kind applies, to show that L acts via a basis of eigenvectors; in other words L has an action that is via diagonal matrices on the holomorphic vector fields on A. In the simple case, where L is itself a number field rather than a product of some number of fields, the CM-type is then a list of complex embeddings of L. There are 2d of those, occurring in complex conjugate pairs; the CM-type is a choice of one out of each pair. It is known that all such possible CM-types can be realised. Basic results of Goro Shimura and Yutaka Taniyama compute the Hasse–Weil L-function of A, in terms of the CM-type and a Hecke L-function with Hecke character, having infinity-type derived from it. These generalise the results of Max Deuring for the elliptic curve case. (en)
  • En mathématiques, une variété abélienne A définie sur un corps commutatif K est dite de type CM si elle possède un sous-anneau commutatif suffisamment grand dans son anneau d'endomorphismes End(A). La terminologie ici est issue de la théorie de la multiplication complexe, qui fut développée pour les courbes elliptiques au XIXe siècle. Un des accomplissements majeurs du XXe siècle en théorie algébrique des nombres et en géométrie algébrique fut de trouver les formulations correctes de la théorie correspondante pour les variétés abéliennes de dimension d > 1. Le problème est d'un niveau plus profond d'abstraction, parce qu'il est plus difficile de manipuler les fonctions analytiques de plusieurs variables complexes. La définition formelle est la suivante : Endℚ(A) (le produit tensoriel de End(A) par le corps ℚ des nombres rationnels) doit contenir un sous-anneau commutatif de dimension 2d sur ℚ. Lorsque d = 1 ceci peut seulement être un corps quadratique, et on récupère les cas où End(A) est un ordre dans un corps quadratique imaginaire. Pour d > 1, il existe des cas comparables pour les (en), les extensions quadratiques complexes de corps totalement réels. Il existe d'autres cas qui reflètent que A peut ne pas être une variété abélienne simple (cela peut être un produit de courbes elliptiques, par exemple). Un autre nom pour les variétés abéliennes de type CM est les variétés abéliennes avec « suffisamment de multiplications complexes ». On sait que si K est le corps des nombres complexes, alors une telle variété A possède un (en) qui est en fait un corps de nombres. Les types possibles d'anneau d'endomorphisme ont été classés, comme les anneaux involutifs (l'involution de Rosati), conduisant à une classification de variétés abéliennes de type CM. Pour construire de telles variétés dans le même style que pour les courbes elliptiques, en démarrant avec un réseau dans ℂd, on doit tenir compte des (en) de la théorie des variétés abéliennes. Le type CM est une description de l'action d'un sous-anneau (maximal) commutatif L de EndQ(A) sur l'espace tangent de A en l'élément neutre. La théorie spectrale sous sa forme élémentaire s'applique, pour montrer que L agit via une base de vecteurs propres ; en d'autres termes : L agit via les matrices diagonales sur les champs de vecteurs holomorphes sur A. Dans le cas simple, où L est lui-même un corps de nombres plutôt qu'un produit de certains corps de nombres, le type CM est alors une liste de plongements complexes de L. Il en existe 2d, apparaissant par paires de conjugués complexes ; le type CM est le choix d'un par paire. On sait que tous les types sont réalisables. Des résultats basiques de Goro Shimura et Yutaka Taniyama calculent la fonction L de Hasse-Weil de A, en termes du type CM et d'une fonction L de Hecke associée à un caractère de Hecke dont dérive un type infini. Ils généralisent les résultats de Deuring pour le cas d'une courbe elliptique. (en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé « Abelian variety of CM-type » (voir la liste des auteurs). * Portail des mathématiques (fr)
  • 数学において体 K 上定義されたアーベル多様体 A がCM-タイプ(CM-type)であるとは、自己準同型環 End(A) の中で十分に大きな部分可換環を持つことをいう。この用語は虚数乗法 (complex multiplication) 論から来ていて、虚数乗法論は19世紀に楕円曲線の研究のため開発された。20世紀の代数的整数論と代数幾何学の主要な成果のひとつに、アーベル多様体の次元 d > 1 の理論の正しい定式化が発見されたことがある。この問題は、多変数複素函数論を使うことが非常に困難であるため、非常に抽象的である。 フォーマルな定義は、有理数体 Q と End(A) のテンソル積 は Z 上、次元 2d の可換部分環を含んでいることである。d = 1 のとき、このことは二次体以外にはありえなく、End(A) は虚二次体の(order)である。d > 1 に対しては、総実体の虚二次拡大であるCM体の場合が比較すべきに対象である。A が単純アーベル多様体ではないかもしれない(例えば、楕円曲線のカルテシアン積)ことを反映する他の他の場合もある。CM-タイプのアーベル多様体の別の名称は、十分に多くの虚数乗法を持つアーベル多様体である。 K が複素数体であれば、任意のCM-タイプの A は、実は、数体である(field of definition)を持っている。自己準同型環の可能なタイプは、対合((Rosati involution))をもつ環として既に分類されていて、CM-タイプのアーベル多様体の分類を導き出す。楕円曲線と同じような方法でCM-タイプの多様体を構成するには、Cd の中の格子 Λ から始め、アーベル多様体のリーマンの関係式を考えに入れる必要がある。 CM-タイプ(CM-type)は、単位元における A の正則接空間上の、EndQ(A) の(極大)可換部分環 L の作用を記述したものである。単純な種類のスペクトル理論が適応され、L が固有ベクトルの基底を通して作用することを示すことができる。言い換えると、L は A の正則ベクトル場の上の対角行列を通した作用を持っている。L 自体が複数の体の積ではなく数体であるという単純な場合には、CM-タイプは L の複素埋め込み(complex embedding)のリストである。複素共役をペアとして、2d 個の複素埋め込みがあり、CM-タイプは各々のペアのから一つを選択する。そのようなCM-タイプの全てが実現されることが知られている。 志村五郎と谷山豊の基本的結果は、CM-タイプとヘッケのL-函数のことばで、A のハッセ・ヴェイユのL-函数を計算することができ、これから導出された無限部分を持つ。これらが、楕円曲線の場合の(Max Deuring)の結果を一般化する。 (ja)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 53 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software