About: Compact space     Goto   Sponge   Distinct   Permalink

An Entity of Type : yago:Message106598915, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FCompact_space

In mathematics, more specifically in general topology, compactness is a property that generalizes the notion of a subset of Euclidean space being closed (i.e., containing all its limit points) and bounded (i.e., having all its points lie within some fixed distance of each other). Examples include a closed interval, a rectangle, or a finite set of points. This notion is defined for more general topological spaces than Euclidean space in various ways. The term compact set is sometimes used as a synonym for compact space, but often refers to a of a topological space as well.

AttributesValues
rdf:type
rdfs:label
  • فضاء متراص
  • Espai compacte
  • Kompaktní množina
  • Kompakter Raum
  • Συμπαγής χώρος
  • Compact space
  • Kompakta spaco
  • Espacio compacto
  • Espazio trinko
  • Compacité (mathématiques)
  • Spazio compatto
  • コンパクト空間
  • 콤팩트 공간
  • Compacte ruimte
  • Przestrzeń zwarta
  • Espaço compacto
  • Компактное пространство
  • Kompakthet
  • Компактний простір
  • 紧空间
rdfs:comment
  • في الرياضيات، يطلق على مجموعة جزئية من الفضاء الإقليدي اسم فضاء متراص إذا كانت مغلقة ومحدودة. على سبيل المثال في مجموعة الأعداد الحقيقية R تكون المجموعة الجزئية [0, 1] هي مجموعة متراصة ولكن ذات المجموعة في مجموعة الأعداد الصحيحة لا تكون متراصة (لأنها ليست محدودة). بتعريف أكثر حداثة، يطلق على فضاء طوبولوجي اسم فضاء متراص إذا كان كل من أغطيته المفتوحة لها غطاء جزئي منتهي.
  • En topologia, un subconjunt d'un espai topològic es diu compacte si tot recobriment obert seu té un subrecobriment finit, és a dir, si per a tot tal que són tots oberts i , hi ha finit tal que . Notar que, en particular, podria ser . En aquest cas es parla d'un espai compacte . Es verifica llavors que és compacte si i només si és un espai compacte per a la topologia traça. El teorema de Heine-Borel estableix que els subconjunts compactes de són els conjunts tancats i acotats. Un resultat important diu que és compacte si i només si tota continguda en té un punt d'acumulació.
  • Je topologio, kompakta spaco estas topologia spaco, sur kiu lokaj strukturoj (difintaj laŭ iu kovraĵo — fibra fasko, ktp.) povas esti ĉiam konsiderata finie, ĉar la kovraĵo estas ĉiam anstataŭebla per finia subkovraĵo. Tial, kompakta spaco estas iasence “finie malgranda” kaj tial ofte facile traktebla. Sub malfortaj kondiĉoj (nome, aksiomo de Hausdorff) ĉiu kompakta subaro estas . En metrika spaco, ĉiu kompakta subaro estas .
  • Topologian, espazio trinko bat bere mugako puntu posible guztiak dituen espazio bat da.
  • En topología, un espacio compacto es un espacio que tiene propiedades similares a un conjunto finito, en cuanto a que las sucesiones contenidas en un conjunto finito siempre contienen una subsucesión convergente. La noción de compacidad es una versión más general de esta propiedad. Un conjunto compacto es un subconjunto de un espacio topológico, que como subespacio topológico (con la topología inducida) es en sí mismo un espacio topológico compacto.
  • 数学において、コンパクト(英: compact)は位相空間の性質である。詳細は後述するがコンパクト性の定義それ自身は直観性に乏しいものであり、証明を容易にする為のいわば操作的なものである。しかし距離空間であればより直観的な言葉でいいかえる事ができ、特に有限次元のユークリッド空間においては有界閉集合であることとコンパクト集合であることとは同値になる。したがってコンパクトの概念はユークリッド空間における有界閉集合の概念を一般の位相空間に拡張したものとしてとらえる事ができる。 なお無限次元では有界閉集合はコンパクトとは限らず、例えばヒルベルト空間内の(縁を含んだ)単位球体は有界かつ閉集合であるがコンパクトではない(距離位相を入れた場合)。 ブルバキでは、ここでいう定義を満たす位相空間を準コンパクト(英: quasi-compact)と呼び、さらにハウスドルフの分離公理を満たすものをコンパクトであると呼んでいる。距離空間など多くの空間ではハウスドルフの分離公理が満たされるので両者の概念は一致するが、一般には注意が必要である。
  • 수학에서, 콤팩트 공간(영어: compact space)은 대략 경계 없이 무한히 뻗어나가지 않는 공간이다. 유클리드 공간의 부분 집합의 경우, 이는 닫힌 유계 집합과 동치이다. 옹골집합이라고도 한다.
  • Przestrzeń zwarta – przestrzeń topologiczna o tej własności, że z dowolnego jej pokrycia zbiorami otwartymi można wybrać podpokrycie skończone (tj. pewna skończona liczba zbiorów pokrycia tworzy pokrycie). Zbiorem zwartym nazywa się podzbiór przestrzeni topologicznej, który traktowany jako podprzestrzeń (z topologią podprzestrzeni) jest przestrzenią zwartą. W niektórych źródłach (np. ) w definicji zwartości dodatkowo wymaga się, aby przestrzeń zwarta była przestrzenią Hausdorffa, a przestrzenie zdefiniowane z pominięciem tego warunku nazywa się przestrzeniami quasi-zwartymi.
  • Em matemática, mais especificamente em topologia geral, o conceito de compacidade é uma extensão topológica das ideias de finitude e limitação. O início do estudo de espaços compactos se deu no final do século XIX, pelas mãos de Émile Borel e Henri Lebesgue e as observações acerca de intervalos fechados e limitados da reta real. Com o advento de novas classes de espaços topológicos (espaços de funções, espaços definidos em termos de vizinhanças e espaços métricos) a noção de compacidade modificou-se para acompanhar as generalizações; passando por sequencialmente compacto, (Riesz - 1908, Vietoris - 1912, Janiszewski - 1913, , e Saks - 1921) e finalmente chegando na definição empregada hoje ( e - 1923).
  • Компа́ктное простра́нство — определённый тип топологических пространств, обобщающий свойства ограниченности и замкнутости в евклидовых пространствах на произвольные топологические пространства. В общей топологии компактные пространства по своим свойствам напоминают конечные множества в теории множеств.
  • Inom matematiken är kompakthet en egenskap hos topologiska rum och delmängder till topologiska rum. En delmängd av de reella eller komplexa talen, eller en delmängd av ett ändligtdimensionellt inre produktrum över dessa, är kompakt om och endast om den är sluten och begränsad, enligt Heine–Borels sats, och tas ibland som definitionen av kompakt över dessa rum. I allmännare fall gäller dock inte denna karaktärisering av kompakta mängder.
  • 在数学中,如果欧几里得空间 Rn 的子集是閉集合且是有界的,那么称它是紧致的。例如,在R中,单位区间[0, 1]是紧致的,但整数集合Z不是(它不是有界的),半开区间[0, 1)也不是(它不是闭合的)。 更现代的方式是称一个拓扑空间为紧致的,如果所有它的开覆盖都有有限子覆盖。海涅-博雷尔定理证明了这个定义对欧几里得空间子集等价于“閉集且有界”。 注意:某些作者如布尔巴基使用术语“预紧致”,并把“紧致”保留给是豪斯多夫空间并且“预紧致”的拓扑空间。一个单一的紧致集合有时称为紧统(compactum)。在法語的數學著作中,quasi-compact是指緊緻,compact是指緊緻且豪斯多夫,不同於英語。
  • Компа́ктний про́стір — це такий топологічний простір, що для будь-якого його відкритого покриття знайдеться скінчене підпокриття. В топології, компактні простори за своїми властивостями нагадують скінченні множини в теорії множин. В математичному аналізі компактна множина - це обмежена й замкнута множина в .
  • Kompaktní množina, nebo také kompaktní prostor, je taková množina bodů topologického prostoru, že z každého jejího pokrytí otevřenými množinami lze vybrat pokrytí konečné. Tato definice v topologii zobecňuje a formalizuje intuitivní představu konečného objemu. V Euklidovských prostorech jsou kompaktní množiny právě omezené a uzavřené podmnožiny. Například v množině reálných čísel R je uzavřený interval [0, 1] kompaktní množinou, ale množina celých čísel Z nikoliv (není omezená). Stejně tak polouzavřený interval [0, 1) není kompaktní množinou, protože to není uzavřená množina.
  • Kompaktheit ist ein zentraler Begriff der mathematischen Topologie, und zwar eine Eigenschaft, die einem topologischen Raum zukommt oder nicht. Sie wird in vielen mathematischen Aussagen vorausgesetzt – oft auch in abgeschwächter Form als Lindelöf-Eigenschaft oder Parakompaktheit. Lokalkompaktheit ist im Falle von Hausdorff-Räumen ebenfalls eine abgeschwächte Bedingung. Eine kompakte Menge nennt man je nach Kontext auch Kompaktum oder kompakter Raum; dabei ist unerheblich, ob sie Teilmenge eines Oberraums ist.
  • Στα μαθηματικά, ειδικά στη γενική τοπολογία και στη , ένας συμπαγής χώρος είναι ένας μαθηματικός τοπολογικός χώρος στον οποίο κάθε των σημείων που διαλέξαμε από το χώρο πρέπει τελικά να τον πάρουμε αυθαίρετα κοντά σε κάποιο σημείο του χώρου. Υπάρχουν πολλές διαφορετικές έννοιες της πληρότητας, σημειώνεται κατωτέρω, οι οποίες είναι ισοδύναμες σε καλές περιπτώσεις. Η έκδοση που μόλις περιγράφηκε είναι γνωστή ως . Το δίνει μια αντίστοιχη συνθήκη για τη διαδοχική συμπάγεια κατά την εξέταση των υποσυνόλων του : ένα σύνολο είναι συμπαγές αν και μόνο αν είναι κλειστό και φραγμένο. Τα παραδείγματα περιλαμβάνουν ένα κλειστό διάστημα ή ένα ορθογώνιο. Έτσι, αν κάποιος επιλέξει έναν άπειρο αριθμό σημείων στο κλειστό ), ορισμένα από αυτά τα σημεία πρέπει να τα πάρουμε αυθαίρετα κοντά σε κάποιο πραγμα
  • In mathematics, more specifically in general topology, compactness is a property that generalizes the notion of a subset of Euclidean space being closed (i.e., containing all its limit points) and bounded (i.e., having all its points lie within some fixed distance of each other). Examples include a closed interval, a rectangle, or a finite set of points. This notion is defined for more general topological spaces than Euclidean space in various ways. The term compact set is sometimes used as a synonym for compact space, but often refers to a of a topological space as well.
  • En topologie, on dit d'un espace qu'il est compact s'il est séparé et qu'il vérifie la propriété de Borel-Lebesgue. La condition de séparation est parfois omise et certains résultats demeurent vrais, comme le ou le théorème de Tychonov. La compacité permet de faire passer certaines propriétés du local au global, c'est-à-dire qu'une propriété vraie au voisinage de chaque point devient valable de façon uniforme sur tout le compact. Une approche plus intuitive de la compacité dans le cas particulier des espaces métriques est détaillée dans l'article « Compacité séquentielle ».
  • In matematica, in particolare in topologia, uno spazio compatto è uno spazio topologico tale che ogni suo ricoprimento aperto contiene un sottoricoprimento finito. Un insieme contenuto in uno spazio topologico si dice compatto se è uno spazio compatto nella topologia indotta. Un insieme in uno spazio topologico si dice inoltre σ-compatto se è costituito dall'unione numerabile di insiemi compatti.
  • In de algemene- en metrische topologie, deelgebieden binnen de wiskunde, is een compacte ruimte een abstracte wiskundige ruimte, waarin indien men, intuïtief gesproken, een oneindig aantal "stappen" in deze ruimte doet, men uiteindelijk willekeurig dicht bij enige ander punt in deze ruimte kan komen. Een gesloten- en begrensde deelverzameling (zoals een gesloten interval van een rechthoek) van een Euclidische ruimte is dus compact, omdat iemands stappen uiteindelijk wel gedwongen uitkomen in de buurt van een punt van de verzameling, een resultaat dat bekendstaat als de stelling van Bolzano-Weierstrass, terwijl de Euclidische ruimte zelf geen compacte ruimte is, dit omdat men oneindig veel gelijkmatige stappen in enige gegeven richting kan zetten zonder ooit heel dicht in de buurt te komen
foaf:depiction
  • External Image
foaf:isPrimaryTopicOf
thumbnail
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git51 as of Sep 16 2020


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3319 as of Dec 29 2020, on Linux (x86_64-centos_6-linux-glibc2.12), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2021 OpenLink Software