About: Cofunction     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FCofunction

In mathematics, a function f is cofunction of a function g if f(A) = g(B) whenever A and B are complementary angles. This definition typically applies to trigonometric functions. The prefix "co-" can be found already in Edmund Gunter's Canon triangulorum (1620). For example, sine (Latin: sinus) and cosine (Latin: cosinus, sinus complementi) are cofunctions of each other (hence the "co" in "cosine"): The same is true of secant (Latin: secans) and cosecant (Latin: cosecans, secans complementi) as well as of tangent (Latin: tangens) and cotangent (Latin: cotangens, tangens complementi):

AttributesValues
rdfs:label
  • Cofunction
  • Cofunzione
rdfs:comment
  • In matematica, una funzione f è cofunzione di una funzione g se f(A) = g(B), dove A e B sono angoli complementari. Tale definizione tipicamente si applica alle funzioni trigonometriche. Per esempio, seno e coseno sono cofunzioni l'una dell'altra (da cui il "co" in "coseno"): Lo stesso vale per tangente e cotangente e per secante e cosecante: Talvolta esprimere una funzione in termini della sua cofunzione è utile nella risoluzione di equazioni trigonometriche. Un esempio è l'equazione sin A = cos B.
  • In mathematics, a function f is cofunction of a function g if f(A) = g(B) whenever A and B are complementary angles. This definition typically applies to trigonometric functions. The prefix "co-" can be found already in Edmund Gunter's Canon triangulorum (1620). For example, sine (Latin: sinus) and cosine (Latin: cosinus, sinus complementi) are cofunctions of each other (hence the "co" in "cosine"): The same is true of secant (Latin: secans) and cosecant (Latin: cosecans, secans complementi) as well as of tangent (Latin: tangens) and cotangent (Latin: cotangens, tangens complementi):
foaf:depiction
  • External Image
foaf:isPrimaryTopicOf
thumbnail
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • In mathematics, a function f is cofunction of a function g if f(A) = g(B) whenever A and B are complementary angles. This definition typically applies to trigonometric functions. The prefix "co-" can be found already in Edmund Gunter's Canon triangulorum (1620). For example, sine (Latin: sinus) and cosine (Latin: cosinus, sinus complementi) are cofunctions of each other (hence the "co" in "cosine"): The same is true of secant (Latin: secans) and cosecant (Latin: cosecans, secans complementi) as well as of tangent (Latin: tangens) and cotangent (Latin: cotangens, tangens complementi): These equations are also known as the cofunction identities. This also holds true for the versine (versed sine, ver) and coversine (coversed sine, cvs), the vercosine (versed cosine, vcs) and covercosine (coversed cosine, cvc), the haversine (half-versed sine, hav) and hacoversine (half-coversed sine, hcv), the havercosine (half-versed cosine, hvc) and hacovercosine (half-coversed cosine, hcc), as well as the exsecant (external secant, exs) and excosecant (external cosecant, exc):
  • In matematica, una funzione f è cofunzione di una funzione g se f(A) = g(B), dove A e B sono angoli complementari. Tale definizione tipicamente si applica alle funzioni trigonometriche. Per esempio, seno e coseno sono cofunzioni l'una dell'altra (da cui il "co" in "coseno"): Lo stesso vale per tangente e cotangente e per secante e cosecante: Talvolta esprimere una funzione in termini della sua cofunzione è utile nella risoluzione di equazioni trigonometriche. Un esempio è l'equazione sin A = cos B.
prov:wasDerivedFrom
page length (characters) of wiki page
is foaf:primaryTopic of
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is Wikipage disambiguates of
Faceted Search & Find service v1.17_git51 as of Sep 16 2020


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3319 as of Dec 29 2020, on Linux (x86_64-centos_6-linux-glibc2.12), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2021 OpenLink Software