In mathematics and electronics, Cavity perturbation theory describes methods for derivation of perturbation formulae for performance changes of a cavity resonator. These performance changes are assumed to be caused by either introduction of a small foreign object into the cavity, or a small deformation of its boundary. Various mathematical methods can be used to study the characteristics of cavities, which are important in the field of microwave systems, and more generally in the field of electro magnetism.
Attributes | Values |
---|
rdfs:label
| - Cavity perturbation theory (en)
|
rdfs:comment
| - In mathematics and electronics, Cavity perturbation theory describes methods for derivation of perturbation formulae for performance changes of a cavity resonator. These performance changes are assumed to be caused by either introduction of a small foreign object into the cavity, or a small deformation of its boundary. Various mathematical methods can be used to study the characteristics of cavities, which are important in the field of microwave systems, and more generally in the field of electro magnetism. (en)
|
foaf:depiction
| |
dct:subject
| |
Wikipage page ID
| |
Wikipage revision ID
| |
Link from a Wikipage to another Wikipage
| |
sameAs
| |
dbp:wikiPageUsesTemplate
| |
thumbnail
| |
has abstract
| - In mathematics and electronics, Cavity perturbation theory describes methods for derivation of perturbation formulae for performance changes of a cavity resonator. These performance changes are assumed to be caused by either introduction of a small foreign object into the cavity, or a small deformation of its boundary. Various mathematical methods can be used to study the characteristics of cavities, which are important in the field of microwave systems, and more generally in the field of electro magnetism. There are many industrial applications for cavity resonators, including microwave ovens, microwave communication systems, and remote imaging systems using electro magnetic waves. How a resonant cavity performs can affect the amount of energy that is required to make it resonate, or the relative stability or instability of the system. (en)
|
prov:wasDerivedFrom
| |
page length (characters) of wiki page
| |
foaf:isPrimaryTopicOf
| |
is Link from a Wikipage to another Wikipage
of | |
is Wikipage redirect
of | |
is known for
of | |
is known for
of | |
is foaf:primaryTopic
of | |