About: Braikenridge?Maclaurin theorem     Goto   Sponge   Distinct   Permalink

An Entity of Type : yago:Message106598915, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FBraikenridge%E2%80%93Maclaurin_theorem

In geometry, the Braikenridge–Maclaurin theorem, named for 18th century British mathematicians William Braikenridge and Colin Maclaurin, is the converse to Pascal's theorem. It states that if the three intersection points of the three pairs of lines through opposite sides of a hexagon lie on a line L, then the six vertices of the hexagon lie on a conic C; the conic may be degenerate, as in Pappus's theorem.

AttributesValues
rdf:type
rdfs:label
  • Teorema de Braikenridge-Maclaurin
  • Braikenridge–Maclaurin theorem
rdfs:comment
  • En geometria, el teorema de Braikenridge–Maclaurin, anomenat així pels matemàtics escocesos del segle XVIII William Braikenridge i Colin Maclaurin, és l'invers del teorema de Pascal. Diu que si els tres punts d'intersecció dels tres parells de rectes prolongació dels costats oposats d'un hexàgon estan en una mateixa recta , aleshores els sis vèrtexs de l'hexàgon estan en un cònica .
  • In geometry, the Braikenridge–Maclaurin theorem, named for 18th century British mathematicians William Braikenridge and Colin Maclaurin, is the converse to Pascal's theorem. It states that if the three intersection points of the three pairs of lines through opposite sides of a hexagon lie on a line L, then the six vertices of the hexagon lie on a conic C; the conic may be degenerate, as in Pappus's theorem.
foaf:depiction
  • External Image
foaf:isPrimaryTopicOf
thumbnail
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • En geometria, el teorema de Braikenridge–Maclaurin, anomenat així pels matemàtics escocesos del segle XVIII William Braikenridge i Colin Maclaurin, és l'invers del teorema de Pascal. Diu que si els tres punts d'intersecció dels tres parells de rectes prolongació dels costats oposats d'un hexàgon estan en una mateixa recta , aleshores els sis vèrtexs de l'hexàgon estan en un cònica . El teorema es pot aplicar a la construcció de Braikenridge-Maclaurin que és una construcció sintètica d'una cònica definida per cinc punts, variant el sisè punt. El teorema de Pascal afirma que, donats sis punts d'una cònica (els vèrtex d'un hexàgon), les tres línies definides per les seves cares oposades s'intersecaran en tres punts colineals.
  • In geometry, the Braikenridge–Maclaurin theorem, named for 18th century British mathematicians William Braikenridge and Colin Maclaurin, is the converse to Pascal's theorem. It states that if the three intersection points of the three pairs of lines through opposite sides of a hexagon lie on a line L, then the six vertices of the hexagon lie on a conic C; the conic may be degenerate, as in Pappus's theorem. The Braikenridge–Maclaurin theorem may be applied in the Braikenridge–Maclaurin construction, which is a synthetic construction of the conic defined by five points, by varying the sixth point. Namely, Pascal's theorem states that given six points on a conic (the vertices of a hexagon), the lines defined by opposite sides intersect in three collinear points. This can be reversed to construct the possible locations for a sixth point, given five existing ones.
prov:wasDerivedFrom
page length (characters) of wiki page
is foaf:primaryTopic of
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
Faceted Search & Find service v1.17_git51 as of Sep 16 2020


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3319 as of Dec 29 2020, on Linux (x86_64-centos_6-linux-glibc2.12), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2021 OpenLink Software