An Entity of Type : yago:Message106598915, within Data Space : dbpedia.org associated with source document(s)

In computational complexity theory, Blum's speedup theorem, first stated by Manuel Blum in 1967, is a fundamental theorem about the complexity of computable functions. Each computable function has an infinite number of different program representations in a given programming language. In the theory of algorithms one often strives to find a program with the smallest complexity for a given computable function and a given complexity measure (such a program could be called optimal). Blum's speedup theorem shows that for any complexity measure there are computable functions that are not optimal with respect to that measure. This also rules out the idea there is a way to assign to arbitrary functions their computational complexity, meaning the assignment to any f of the complexity of an optimal

AttributesValues
rdf:type
rdfs:label
• Blum's speedup theorem
rdfs:comment
• In computational complexity theory, Blum's speedup theorem, first stated by Manuel Blum in 1967, is a fundamental theorem about the complexity of computable functions. Each computable function has an infinite number of different program representations in a given programming language. In the theory of algorithms one often strives to find a program with the smallest complexity for a given computable function and a given complexity measure (such a program could be called optimal). Blum's speedup theorem shows that for any complexity measure there are computable functions that are not optimal with respect to that measure. This also rules out the idea there is a way to assign to arbitrary functions their computational complexity, meaning the assignment to any f of the complexity of an optimal
foaf:isPrimaryTopicOf
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
title
• Blum's Speed-Up Theorem
urlname
• BlumsSpeed-UpTheorem
has abstract
• In computational complexity theory, Blum's speedup theorem, first stated by Manuel Blum in 1967, is a fundamental theorem about the complexity of computable functions. Each computable function has an infinite number of different program representations in a given programming language. In the theory of algorithms one often strives to find a program with the smallest complexity for a given computable function and a given complexity measure (such a program could be called optimal). Blum's speedup theorem shows that for any complexity measure there are computable functions that are not optimal with respect to that measure. This also rules out the idea there is a way to assign to arbitrary functions their computational complexity, meaning the assignment to any f of the complexity of an optimal program for f. This does of course not exclude the possibility of finding the complexity of an optimal program for certain specific functions.
prov:wasDerivedFrom
page length (characters) of wiki page
is foaf:primaryTopic of
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is Wikipage disambiguates of
is known for of
is known for of
Faceted Search & Find service v1.17_git51 as of Sep 16 2020

Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About

OpenLink Virtuoso version 08.03.3319 as of Dec 29 2020, on Linux (x86_64-centos_6-linux-glibc2.12), Single-Server Edition (61 GB total memory)