An Entity of Type : yago:Speech107109196, within Data Space : dbpedia.org associated with source document(s)

The axiom of countable choice or axiom of denumerable choice, denoted ACω, is an axiom of set theory that states that every countable collection of non-empty sets must have a choice function. That is, given a function A with domain N (where N denotes the set of natural numbers) such that A(n) is a non-empty set for every n ∈ N, there exists a function f with domain N such that f(n) ∈ A(n) for every n ∈ N.

AttributesValues
rdf:type
rdfs:label
• Axiom of countable choice
rdfs:comment
• The axiom of countable choice or axiom of denumerable choice, denoted ACω, is an axiom of set theory that states that every countable collection of non-empty sets must have a choice function. That is, given a function A with domain N (where N denotes the set of natural numbers) such that A(n) is a non-empty set for every n ∈ N, there exists a function f with domain N such that f(n) ∈ A(n) for every n ∈ N.
foaf:depiction
foaf:isPrimaryTopicOf
thumbnail
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
id
title
• axiom of countable choice
has abstract
• The axiom of countable choice or axiom of denumerable choice, denoted ACω, is an axiom of set theory that states that every countable collection of non-empty sets must have a choice function. That is, given a function A with domain N (where N denotes the set of natural numbers) such that A(n) is a non-empty set for every n ∈ N, there exists a function f with domain N such that f(n) ∈ A(n) for every n ∈ N.
prov:wasDerivedFrom
page length (characters) of wiki page
Faceted Search & Find service v1.17_git81 as of Jul 16 2021

Alternative Linked Data Documents: PivotViewer | ODE     Content Formats:       RDF       ODATA       Microdata      About

OpenLink Virtuoso version 08.03.3322 as of Jul 22 2021, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (61 GB total memory)