About: Abel–Ruffini theorem     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Theorem106752293, within Data Space : dbpedia.org associated with source document(s)

In mathematics, the Abel–Ruffini theorem (also known as Abel's impossibility theorem) states that there is no solution in radicals to general polynomial equations of degree five or higher with arbitrary coefficients. Here, general means that the coefficients of the equation are viewed and manipulated as indeterminates. The theorem is named after Paolo Ruffini, who made an incomplete proof in 1799, and Niels Henrik Abel, who provided a proof in 1824. is the simplest equation that cannot be solved in radicals, and that almost all polynomials of degree five or higher cannot be solved in radicals.

AttributesValues
rdf:type
rdfs:label
  • مبرهنة أبيل-روفيني
  • Teorema d'Abel-Ruffini
  • Satz von Abel-Ruffini
  • Abel–Ruffini theorem
  • Teorema de Abel-Ruffini
  • Théorème d'Abel (algèbre)
  • Teorema Abel–Ruffini
  • Teorema di Abel-Ruffini
  • アーベル-ルフィニの定理
  • Stelling van Abel-Ruffini
  • Twierdzenie Abela-Ruffiniego
  • Teorema de Abel–Ruffini
  • Теорема Абеля о неразрешимости уравнений в радикалах
  • Теорема Абеля — Руффіні
  • 阿贝尔-鲁菲尼定理
rdfs:comment
  • في الجبر، مبرهنة أبيل-روفيني (بالإنجليزية: Abel–Ruffini theorem)‏ هي مبرهنة رياضية تنص على أن ليس هناك حلولا جبرية للمعادلات الحدودية من الدرجة الخامسة وما فوق. سميت هكذا نسبة إلى عالم الرياضيات باولو روفيني الذي أعطى برهانا غير كامل لها في عام 1799 وإلى عالم الرياضيات نيلس هنريك أبيل الذي برهن عليها بشكل كامل في عام 1823. إيفاريست غالوا أعطى برهانا على هذه المبرهنة في عمل مستقل له، نشر في عام 1846 سنوات عديدة بعد وفاته.
  • Il teorema di Abel-Ruffini afferma che non esiste una relazione risolutiva generale esprimibile tramite radicali per le equazioni polinomiali di grado 5 o superiore. Il teorema fu provato per la prima volta da Paolo Ruffini nel 1799, ma la sua dimostrazione fu generalmente ignorata. Sebbene contenesse una piccola lacuna, fu piuttosto innovativa nell'uso dei gruppi di permutazione. Il teorema è anche attribuito a Niels Henrik Abel, che pubblicò una dimostrazione nel 1824.
  • アーベル–ルフィニの定理(アーベル–ルフィニのていり、英: Abel–Ruffini theorem)は、五次以上の代数方程式には解の公式が存在しない、と主張する定理である。より正確には、5以上の任意の整数 n に対して、一般の n 次方程式を代数的に解く方法は存在しない、という定理である。
  • De stelling van Abel-Ruffini zegt dat er geen algemene methode is, om de nulpunten van een polynoom van de graad vijf of hoger, met coëfficiënten die gehele of rationale getallen zijn, al dan niet met behulp van wortelvormen te bepalen. De vergelijking is niet op te lossen door alleen maar de basisoperaties en wortelvormen te gebruiken. De nulpunten van de polynoom zijn niet uit te drukken in de coëfficiënten van . De stelling is naar Paolo Ruffini en Niels Henrik Abel genoemd.
  • Теорема Абеля — Руффини утверждает, что общее алгебраическое уравнение степени неразрешимо в радикалах.
  • 阿贝尔-鲁菲尼定理是代数学中的重要定理。它指出,五次及更高次的多项式方程没有一般的求根公式,即不是所有这样的方程都能由方程的系数经有限次四则运算和开方运算求根。这个定理以和尼尔斯·阿贝尔命名。前者在1799年给出了一个不完整的证明,后者则在1824年给出了完整的证明。埃瓦里斯特·伽罗瓦创造了群论,独立地给出了更广泛地判定多项式方程是否拥有根式解的方法,并给出了定理的证明,但直到他死後的1846年才得以发表。
  • Теорема Абеля—Руффіні стверджує, що загальне рівняння п'ятого та вищого степеня є нерозв'язним в радикалах. Тобто, не існує алгебраїчної формули, що виражає корені многочлена п'ятого чи вищого степеня. Основна теорема алгебри доводить, що рівняння -го степеня має комплексних коренів. Хоча над іншими полями цих коренів може і не існувати. Тому загальну відповідь про наявність коренів многочлена над заданим полем та розв'язність над цим полем дає теорія Галуа.
  • El teorema d'Abel-Ruffini afirma que en el cas de les equacions polinòmiques de grau superior o igual al cinquè, és a dir les equacions de la forma: On , és impossible de trobar una fórmula general que permeti calcular les arrels de l'equació a partir dels seus coeficients amb un nombre finit de sumes, restes, multiplicacions, divisions i arrels. El teorema no afirma pas que aquestes equacions no tinguin solució. De fet, tal com estableix el teorema fonamental de l'àlgebra tota equació polinòmica de grau n té pel cap baix una solució al conjunt dels nombres complexos.
  • In mathematics, the Abel–Ruffini theorem (also known as Abel's impossibility theorem) states that there is no solution in radicals to general polynomial equations of degree five or higher with arbitrary coefficients. Here, general means that the coefficients of the equation are viewed and manipulated as indeterminates. The theorem is named after Paolo Ruffini, who made an incomplete proof in 1799, and Niels Henrik Abel, who provided a proof in 1824. is the simplest equation that cannot be solved in radicals, and that almost all polynomials of degree five or higher cannot be solved in radicals.
  • En matemáticas el teorema de Abel-Ruffini (también conocido como Teorema de la imposibilidad de Abel) enuncia que no pueden resolverse por radicales las ecuaciones polinómicas generales de grado igual o superior a cinco. Es decir, no es posible encontrar las soluciones de la ecuación general: de grado superior o igual a cinco, aplicando únicamente un número finito de sumas, restas, multiplicaciones, divisiones y extracción de raíces a los coeficientes de la ecuación.
  • En mathématiques et plus précisément en algèbre, le théorème d'Abel, parfois appelé théorème d'Abel-Ruffini ou encore théorème de Ruffini, indique que pour tout entier n supérieur ou égal à 5, il n'existe pas de formule générale exprimant « par radicaux » les racines d'un polynôme quelconque de degré n, c'est-à-dire de formule n'utilisant que les coefficients, la valeur 1, les quatre opérations et l'extraction des racines n-ièmes. Ceci contraste avec les degrés 2, 3 et 4 pour lesquels de telles formules génériques existent, la plus connue étant celle pour le degré 2, qui exprime les solutions de ax2 + bx + c = 0 sous la forme (–b ± √b2 – 4ac)/2a.
  • Dalam matematika, Teorema Abel – Ruffini (juga dikenal sebagai Teorema ketakmungkinan Abel) menyatakan bahwa tidak ada menjadi persamaan polinomial dari derajat lima atau lebih tinggi dengan sembarang koefisien. Di sini, umum berarti bahwa koefisien persamaan dipandang dan dimanipulasi sebagai . Teorema ini dinamai Paolo Ruffini, yang membuat bukti tidak lengkap pada tahun 1799, dan Niels Henrik Abel, yang memberikan bukti pada tahun 1824.
  • Twierdzenie Abela-Ruffiniego – głosi, że pierwiastki równania algebraicznego stopnia wyższego niż 4 nie dają się wyrazić w ogólnej postaci za pomocą czterech działań algebraicznych i pierwiastkowania poprzez współczynniki równania w skończonej liczbie kroków (czyli poprzez tak zwane pierwiastniki). Mówiąc krótko, nie istnieją ogólne wzory na rozwiązania takiego równania. Na przykład rozwiązania równania kwadratowego postaci dla wyrażają się wzorami:
  • O Teorema de Abel-Ruffini é um teorema criado pelos matemáticos Paolo Ruffini (demonstração em 1799, contendo um pequeno erro) e Niels Henrik Abel (demonstração final em 1824). O teorema afirma que não há uma solução geral através de radicais para as equações polinomiais de grau cinco ou superior. Note-se que o teorema não afirma que as equações polinomiais de ordem cinco ou superior não têm solução. Na verdade, se o polinômio tiver coeficientes reais ou complexos e se permitirem-se soluções complexas, então todos as equações polinomiais têm solução. Essa é aliás a proposição do teorema fundamental da álgebra. Ainda que essas soluções não possam ser calculadas com rigor, podem ser obtidas com um grau de precisão requerido usando métodos numéricos tais como o métodos de Newton-Raphson ou o
differentFrom
rdfs:seeAlso
foaf:isPrimaryTopicOf
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git81 as of Jul 16 2021


Alternative Linked Data Documents: PivotViewer | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3322 as of Aug 2 2021, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2021 OpenLink Software