About: Wake-sleep algorithm     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : dbo:Software, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FWake-sleep_algorithm&graph=http%3A%2F%2Fdbpedia.org&graph=http%3A%2F%2Fdbpedia.org

The wake-sleep algorithm is an unsupervised learning algorithm for a stochastic multilayer neural network. The algorithm adjusts the parameters so as to produce a good density estimator. There are two learning phases, the “wake” phase and the “sleep” phase, which are performed alternately. It was first designed as a model for brain functioning using variational Bayesian learning. After that, the algorithm was adapted to machine learning. It can be viewed as a way to train a Helmholtz Machine. It can also be used in Deep Belief Networks (DBN).

AttributesValues
rdf:type
rdfs:label
  • Wake-sleep algorithm (en)
rdfs:comment
  • The wake-sleep algorithm is an unsupervised learning algorithm for a stochastic multilayer neural network. The algorithm adjusts the parameters so as to produce a good density estimator. There are two learning phases, the “wake” phase and the “sleep” phase, which are performed alternately. It was first designed as a model for brain functioning using variational Bayesian learning. After that, the algorithm was adapted to machine learning. It can be viewed as a way to train a Helmholtz Machine. It can also be used in Deep Belief Networks (DBN). (en)
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/IWpic.jpg
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
thumbnail
has abstract
  • The wake-sleep algorithm is an unsupervised learning algorithm for a stochastic multilayer neural network. The algorithm adjusts the parameters so as to produce a good density estimator. There are two learning phases, the “wake” phase and the “sleep” phase, which are performed alternately. It was first designed as a model for brain functioning using variational Bayesian learning. After that, the algorithm was adapted to machine learning. It can be viewed as a way to train a Helmholtz Machine. It can also be used in Deep Belief Networks (DBN). (en)
gold:hypernym
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (62 GB total memory, 52 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software