In ring theory, a branch of mathematics, semiprime ideals and semiprime rings are generalizations of prime ideals and prime rings. In commutative algebra, semiprime ideals are also called radical ideals and semiprime rings are the same as reduced rings. For example, in the ring of integers, the semiprime ideals are the zero ideal, along with those ideals of the form where n is a square-free integer. So, is a semiprime ideal of the integers (because 30 = 2 × 3 × 5, with no repeated prime factors), but is not (because 12 = 22 × 3, with a repeated prime factor).
Attributes | Values |
---|
rdf:type
| |
rdfs:label
| - Semiprimideal (de)
- 半素環 (ja)
- 반소환 (ko)
- Semiprime ring (en)
|
rdfs:comment
| - Ein Semiprimideal ist ein Begriff aus der abstrakten Algebra. Er stellt eine Erweiterung des Begriffs des Primideals dar. (de)
- 数学の一分野である環論において、半素イデアルと半素環は素イデアルと素環の一般化である。可換環論においては、半素イデアルは根基イデアルとも呼ばれる。 例えば、有理整数環において、半素イデアルは、零イデアルと、n を square-free な整数として の形のイデアルである。したがって、 は有理整数環の半素イデアルだが は半素イデアルでない。 半素環のクラスは半原始環、素環、被約環を含む。 この記事における多くの定義や主張はとにある。 (ja)
- 환론에서 반소환(半素環, 영어: semiprime ring)은 멱영 아이디얼이 영 아이디얼 밖에 없는 환이다. 축소환과 소환의 공통적인 일반화이다. (ko)
- In ring theory, a branch of mathematics, semiprime ideals and semiprime rings are generalizations of prime ideals and prime rings. In commutative algebra, semiprime ideals are also called radical ideals and semiprime rings are the same as reduced rings. For example, in the ring of integers, the semiprime ideals are the zero ideal, along with those ideals of the form where n is a square-free integer. So, is a semiprime ideal of the integers (because 30 = 2 × 3 × 5, with no repeated prime factors), but is not (because 12 = 22 × 3, with a repeated prime factor). (en)
|
foaf:depiction
| |
dcterms:subject
| |
Wikipage page ID
| |
Wikipage revision ID
| |
Link from a Wikipage to another Wikipage
| |
Link from a Wikipage to an external page
| |
sameAs
| |
dbp:wikiPageUsesTemplate
| |
thumbnail
| |
has abstract
| - Ein Semiprimideal ist ein Begriff aus der abstrakten Algebra. Er stellt eine Erweiterung des Begriffs des Primideals dar. (de)
- In ring theory, a branch of mathematics, semiprime ideals and semiprime rings are generalizations of prime ideals and prime rings. In commutative algebra, semiprime ideals are also called radical ideals and semiprime rings are the same as reduced rings. For example, in the ring of integers, the semiprime ideals are the zero ideal, along with those ideals of the form where n is a square-free integer. So, is a semiprime ideal of the integers (because 30 = 2 × 3 × 5, with no repeated prime factors), but is not (because 12 = 22 × 3, with a repeated prime factor). The class of semiprime rings includes semiprimitive rings, prime rings and reduced rings. Most definitions and assertions in this article appear in and. (en)
- 数学の一分野である環論において、半素イデアルと半素環は素イデアルと素環の一般化である。可換環論においては、半素イデアルは根基イデアルとも呼ばれる。 例えば、有理整数環において、半素イデアルは、零イデアルと、n を square-free な整数として の形のイデアルである。したがって、 は有理整数環の半素イデアルだが は半素イデアルでない。 半素環のクラスは半原始環、素環、被約環を含む。 この記事における多くの定義や主張はとにある。 (ja)
- 환론에서 반소환(半素環, 영어: semiprime ring)은 멱영 아이디얼이 영 아이디얼 밖에 없는 환이다. 축소환과 소환의 공통적인 일반화이다. (ko)
|
prov:wasDerivedFrom
| |
page length (characters) of wiki page
| |
foaf:isPrimaryTopicOf
| |
is Link from a Wikipage to another Wikipage
of | |
is Wikipage redirect
of | |
is foaf:primaryTopic
of | |