About: Schreier refinement theorem     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Theorem106752293, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FSchreier_refinement_theorem&graph=http%3A%2F%2Fdbpedia.org&graph=http%3A%2F%2Fdbpedia.org

In mathematics, the Schreier refinement theorem of group theory states that any two subnormal series of subgroups of a given group have equivalent refinements, where two series are equivalent if there is a bijection between their factor groups that sends each factor group to an isomorphic one. The theorem is named after the Austrian mathematician Otto Schreier who proved it in 1928. It provides an elegant proof of the Jordan–Hölder theorem. It is often proved using the Zassenhaus lemma. gives a short proof by intersecting the terms in one subnormal series with those in the other series.

AttributesValues
rdf:type
rdfs:label
  • Théorème de raffinement de Schreier (fr)
  • 슈라이어 정리 (ko)
  • Schreier refinement theorem (en)
  • Twierdzenie Schreiera (pl)
rdfs:comment
  • In mathematics, the Schreier refinement theorem of group theory states that any two subnormal series of subgroups of a given group have equivalent refinements, where two series are equivalent if there is a bijection between their factor groups that sends each factor group to an isomorphic one. The theorem is named after the Austrian mathematician Otto Schreier who proved it in 1928. It provides an elegant proof of the Jordan–Hölder theorem. It is often proved using the Zassenhaus lemma. gives a short proof by intersecting the terms in one subnormal series with those in the other series. (en)
  • En mathématiques, et plus particulièrement en théorie des groupes, le théorème de raffinement de Schreier dit que pour deux suites de composition d'un même groupe, il existe toujours un raffinement de la première et un raffinement de la seconde qui sont équivalents. (Par suite de composition d'un groupe G, on entend ici une suite finie décroissante de sous-groupes de G allant de G à {1}, chacun de ces sous-groupes, à partir du second, étant sous-groupe normal du précédent.) (fr)
  • Twierdzenie Schreiera – twierdzenie teorii grup mówiące, że dowolne dwa ciągi podnormalne grupy mają równoważne zagęszczenia, tzn. zagęszczenia o izomorficznych ilorazach, niekoniecznie w tej samej kolejności. Sam autor zasygnalizował w przypisach, że twierdzenie zachodzi również dla grup z operatorami, jednak twierdzenie uogólnia się też na moduły, a nawet (dla których zachodzi lemat Zassenhausa pociągający twierdzenie Schreiera). (pl)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • En mathématiques, et plus particulièrement en théorie des groupes, le théorème de raffinement de Schreier dit que pour deux suites de composition d'un même groupe, il existe toujours un raffinement de la première et un raffinement de la seconde qui sont équivalents. (Par suite de composition d'un groupe G, on entend ici une suite finie décroissante de sous-groupes de G allant de G à {1}, chacun de ces sous-groupes, à partir du second, étant sous-groupe normal du précédent.) Ce théorème est nommé d'après le mathématicien autrichien Otto Schreier, qui le démontra en 1928. Il fournit une démonstration du théorème de Jordan-Hölder. (fr)
  • In mathematics, the Schreier refinement theorem of group theory states that any two subnormal series of subgroups of a given group have equivalent refinements, where two series are equivalent if there is a bijection between their factor groups that sends each factor group to an isomorphic one. The theorem is named after the Austrian mathematician Otto Schreier who proved it in 1928. It provides an elegant proof of the Jordan–Hölder theorem. It is often proved using the Zassenhaus lemma. gives a short proof by intersecting the terms in one subnormal series with those in the other series. (en)
  • Twierdzenie Schreiera – twierdzenie teorii grup mówiące, że dowolne dwa ciągi podnormalne grupy mają równoważne zagęszczenia, tzn. zagęszczenia o izomorficznych ilorazach, niekoniecznie w tej samej kolejności. Twierdzenie zostało odkryte przez w 1928 roku w wyniku próby uproszczenia dowodu twierdzenia Jordana-Höldera (dowolne dwa ciągi kompozycyjne danej grupy są równoważne, o ile tylko grupa ma ciąg kompozycyjny); sześć lat później Hans Zassenhaus opublikował lemat nazwany jego nazwiskiem w celu ulepszenia dowodu twierdzenia Schreiera – stąd pochodzi rzadsza, zamiennie stosowana nazwa twierdzenia: twierdzenie Schreiera-Zassenhausa. W przypadku uogólnień niekiedy spotyka się też nazwę twierdzenie Jordana-Höldera-Schreiera. Innym zastosowaniem twierdzenia Schreiera jest możliwość wykazania, że w grupie z (co najmniej jednym) ciągiem kompozycyjnym dowolny ciąg podnormalny można zagęścić do ciągu kompozycyjnego: wystarczy zacząć od ciągów podnormalnego i kompozycyjnego konstruując ich równoważne zagęszczenia zgodnie z twierdzeniem – zagęszczenie ciągu normalnego stanie się ciągiem kompozycyjnym po zastąpieniu wszystkich powtarzających się podgrup w zagęszczeniu pojedynczym egzemplarzem każdej z tych podgrup (zob. lemat do twierdzenia Jordana-Höldera). Sam autor zasygnalizował w przypisach, że twierdzenie zachodzi również dla grup z operatorami, jednak twierdzenie uogólnia się też na moduły, a nawet (dla których zachodzi lemat Zassenhausa pociągający twierdzenie Schreiera). (pl)
gold:hypernym
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Sep 2 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (61 GB total memory, 38 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software