About: Quadric geometric algebra     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FQuadric_geometric_algebra&graph=http%3A%2F%2Fdbpedia.org&graph=http%3A%2F%2Fdbpedia.org

Quadric geometric algebra (QGA) is a geometrical application of the geometric algebra. This algebra is also known as the Clifford algebra. QGA is a super-algebra over conformal geometric algebra (CGA) and spacetime algebra (STA), which can each be defined within sub-algebras of QGA. General quadric surfaces are characterized by the implicit polynomial equation of degree 2 This is still a very significant advancement over CGA.

AttributesValues
rdfs:label
  • Quadric geometric algebra (en)
rdfs:comment
  • Quadric geometric algebra (QGA) is a geometrical application of the geometric algebra. This algebra is also known as the Clifford algebra. QGA is a super-algebra over conformal geometric algebra (CGA) and spacetime algebra (STA), which can each be defined within sub-algebras of QGA. General quadric surfaces are characterized by the implicit polynomial equation of degree 2 This is still a very significant advancement over CGA. (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • Quadric geometric algebra (QGA) is a geometrical application of the geometric algebra. This algebra is also known as the Clifford algebra. QGA is a super-algebra over conformal geometric algebra (CGA) and spacetime algebra (STA), which can each be defined within sub-algebras of QGA. CGA provides representations of spherical entities (points, spheres, planes, and lines) and a complete set of operations (translation, rotation, dilation, and intersection) that apply to them. QGA extends CGA to also include representations of some non-spherical entities: principal axes-aligned quadric surfaces and many of their degenerate forms such as planes, lines, and points. General quadric surfaces are characterized by the implicit polynomial equation of degree 2 which can characterize quadric surfaces located at any center point and aligned along arbitrary axes. However, QGA includes vector entities that can represent only the principal axes-aligned quadric surfaces characterized by This is still a very significant advancement over CGA. A possible performance issue with using QGA is the increased computation required to use a 9D vector space, as compared to the smaller 5D vector space of CGA. A 5D CGA subspace can be used when only CGA entities are involved in computations. In general, the operation of rotation does not work correctly on non-spherical QGA quadric surface entities. Rotation also does not work correctly on the QGA point entities. Attempting to rotate a QGA quadric surface may result in a different type of quadric surface, or a quadric surface that is rotated and distorted in an unexpected way. Attempting to rotate a QGA point may produce a value that projects as the expected rotated vector, but the produced value is generally not a correct embedding of the rotated vector. The failure of QGA points to rotate correctly also leads to the inability to use outermorphisms to rotate dual Geometric Outer Product Null Space (GOPNS) entities. To rotate a QGA point, it must be projected to a vector or converted to a CGA point for rotation operations, then the rotated result can be re-embedded or converted back into a QGA point. A quadric surface rotated by an arbitrary angle cannot be represented by any known QGA entity. Representation of general quadric surfaces with useful operations will require an algebra (that appears to be unknown at this time) that extends QGA. Although rotation is generally unavailable in QGA, the transposition operation is a special-case modification of rotation by that works correctly on all QGA GIPNS entities. Transpositions allow QGA GIPNS entities to be reflected in the six diagonal planes , , and . Entities for all principal axes-aligned quadric surfaces can be defined in QGA. These include ellipsoids, cylinders, cones, paraboloids, and hyperboloids in all of their various forms. A powerful feature of QGA is the ability to compute the intersections of axes-aligned quadric surfaces. With few exceptions, the outer product of QGA GIPNS surface entities represents their surfaces intersection(s). This method of computing intersections works the same as it does in CGA, where only spherical entities are available. (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Sep 2 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (61 GB total memory, 47 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software