Marie-France Vignéras (born 1946) is a French mathematician. She is a Professor Emeritus of the Institut de Mathématiques de Jussieu in Paris. She is known for her proof published in 1980 of the existence of isospectral non-isometric Riemann surfaces. Such surfaces show that one cannot hear the shape of a hyperbolic drum. Another highlight of her work is the establishment of the mod-l local Langlands correspondence for GL(n) in 2000. Her current work concerns the p-adic Langlands program.
Attributes | Values |
---|
rdf:type
| |
rdfs:label
| - Marie-France Vignéras (ca)
- Marie-France Vignéras (de)
- Marie-France Vignéras (fr)
- Marie-France Vignéras (en)
- Marie-France Vignéras (pt)
|
rdfs:comment
| - Marie-France Vignéras (* 29. Juli 1946 in ) ist eine französische Mathematikerin, die sich mit Zahlentheorie und algebraischer Geometrie beschäftigt. (de)
- Marie-France Vignéras (born 1946) is a French mathematician. She is a Professor Emeritus of the Institut de Mathématiques de Jussieu in Paris. She is known for her proof published in 1980 of the existence of isospectral non-isometric Riemann surfaces. Such surfaces show that one cannot hear the shape of a hyperbolic drum. Another highlight of her work is the establishment of the mod-l local Langlands correspondence for GL(n) in 2000. Her current work concerns the p-adic Langlands program. (en)
- Marie-France Vignéras, née le 29 juillet 1946 à Caudéran (devenu en 1965 un quartier de Bordeaux), est une mathématicienne française, spécialiste de théorie des nombres et de géométrie algébrique. Elle est professeur émérite à l'Institut de mathématiques de Jussieu-Paris-rive-gauche institut commun au CNRS et aux universités Pierre-et-Marie-Curie et Paris-Diderot. (fr)
- Marie-France Vignéras é uma matemática francesa, que trabalha com teoria dos números e geometria algébrica. Foi palestrante convidada do Congresso Internacional de Matemáticos em Pequim (2002: Modular representations of p-adic groups and of affine Hecke algebras). (pt)
- Marie-França Vignéras (1946) és una matemàtica francesa. És professora emèrita de l'Institut de Mathématiques de Jussieu a París. És coneguda per la seva demostració, publicada l'any 1980, de l'existència de superfícies riemannianes isospectrals no isomètriques. Tals superfícies mostren que un no pot sentir la forma d'un tambor hiperbòlic. Un altre punt destacat de la seva recerca és l'establiment de la correspondència lodal de Langlands mod-l per GL(n) l'any 2000. La seva obra actual tracta sobre els programes p-àdics de Langlands. (ca)
|
foaf:depiction
| |
dcterms:subject
| |
Wikipage page ID
| |
Wikipage revision ID
| |
Link from a Wikipage to another Wikipage
| |
Link from a Wikipage to an external page
| |
sameAs
| |
dbp:wikiPageUsesTemplate
| |
thumbnail
| |
has abstract
| - Marie-França Vignéras (1946) és una matemàtica francesa. És professora emèrita de l'Institut de Mathématiques de Jussieu a París. És coneguda per la seva demostració, publicada l'any 1980, de l'existència de superfícies riemannianes isospectrals no isomètriques. Tals superfícies mostren que un no pot sentir la forma d'un tambor hiperbòlic. Un altre punt destacat de la seva recerca és l'establiment de la correspondència lodal de Langlands mod-l per GL(n) l'any 2000. La seva obra actual tracta sobre els programes p-àdics de Langlands. Nascuda l'any 1946, Vignéras era filla de Janine Mocudé i Robert Vignéras (capità de mar i pilot en el port de Dakar). Va passar la seva infantesa a Senegal, i va fer els seus estudis d'institut al lycée Van-Vollenhoven de Dakar. Es va traslladar a la Universitat de Bordeus després de completar el batxillerat al Senegal. Va rebre l'agregació de matemàtiques l'any 1969 i el doctorat l'any 1974; la seva tesi va ser escrita sota la direcció de Jacques Martinet. Vignéras va ser directora de matemàtiques a l'Ecole Normale Supérieure de Sèvres de 1977 a 1983. Posteriorment, va tornar amb els seus col·legues a la Universitat Denis Diderot. D'ençà de 2010 ha estat professora emèrita. Vignéras ha fet nombroses estades en universitats i instituts estrangers, inclòs l'Institut de Max Planck de Matemàtiques de Bonn, la Universitat de Califòrnia a Berkeley, l'Institut Tata per a la Recerca Fonamental de Bombai i l'Institut Radcliffe de la Universitat Harvard. Ha estat professora Emmy Noether de la Universitat de Göttingen i ha estat conferenciant convidada al Congrés Europeu de Matemàtiques (Barcelona, 2000) i el Congrés Internacional de Matemàtiques (Pequín, 2002). Vignéras va rebre la Medalla Albert Chatelet l'any 1978, la Medalla de plata del C.N.R.S. l'any 1984, el Premi von Humboldt l'any 1985 i el Prix Petit d'Ormoy, Carrière, Thébault de l'Acadèmia Francesa de Ciències l'any 1997. Es va convertir en membre de l'Academia Europaea l'any 2017. Va ser elegida en la promoció de 2018 membres de la Societat Americana de Matemàtiques. (ca)
- Marie-France Vignéras (* 29. Juli 1946 in ) ist eine französische Mathematikerin, die sich mit Zahlentheorie und algebraischer Geometrie beschäftigt. (de)
- Marie-France Vignéras (born 1946) is a French mathematician. She is a Professor Emeritus of the Institut de Mathématiques de Jussieu in Paris. She is known for her proof published in 1980 of the existence of isospectral non-isometric Riemann surfaces. Such surfaces show that one cannot hear the shape of a hyperbolic drum. Another highlight of her work is the establishment of the mod-l local Langlands correspondence for GL(n) in 2000. Her current work concerns the p-adic Langlands program. (en)
- Marie-France Vignéras, née le 29 juillet 1946 à Caudéran (devenu en 1965 un quartier de Bordeaux), est une mathématicienne française, spécialiste de théorie des nombres et de géométrie algébrique. Elle est professeur émérite à l'Institut de mathématiques de Jussieu-Paris-rive-gauche institut commun au CNRS et aux universités Pierre-et-Marie-Curie et Paris-Diderot. (fr)
- Marie-France Vignéras é uma matemática francesa, que trabalha com teoria dos números e geometria algébrica. Foi palestrante convidada do Congresso Internacional de Matemáticos em Pequim (2002: Modular representations of p-adic groups and of affine Hecke algebras). (pt)
|