About: Infinite sites model     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FInfinite_sites_model&graph=http%3A%2F%2Fdbpedia.org&graph=http%3A%2F%2Fdbpedia.org

The Infinite sites model (ISM) is a mathematical model of molecular evolution first proposed by Motoo Kimura in 1969. Like other mutation models, the ISM provides a basis for understanding how mutation develops new alleles in DNA sequences. Using allele frequencies, it allows for the calculation of heterozygosity, or genetic diversity, in a finite population and for the estimation of genetic distances between populations of interest. When considering the length of a DNA sequence, the expected number of mutations is calculated as follows

AttributesValues
rdfs:label
  • Infinite sites model (en)
rdfs:comment
  • The Infinite sites model (ISM) is a mathematical model of molecular evolution first proposed by Motoo Kimura in 1969. Like other mutation models, the ISM provides a basis for understanding how mutation develops new alleles in DNA sequences. Using allele frequencies, it allows for the calculation of heterozygosity, or genetic diversity, in a finite population and for the estimation of genetic distances between populations of interest. When considering the length of a DNA sequence, the expected number of mutations is calculated as follows (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • The Infinite sites model (ISM) is a mathematical model of molecular evolution first proposed by Motoo Kimura in 1969. Like other mutation models, the ISM provides a basis for understanding how mutation develops new alleles in DNA sequences. Using allele frequencies, it allows for the calculation of heterozygosity, or genetic diversity, in a finite population and for the estimation of genetic distances between populations of interest. The assumptions of the ISM are that (1) there are an infinite number of sites where mutations can occur, (2) every new mutation occurs at a novel site, and (3) there is no recombination. The term ‘site’ refers to a single nucleotide base pair. Because every new mutation has to occur at a novel site, there can be no homoplasy, or back-mutation to an allele that previously existed. All identical alleles are identical by descent. The four gamete rule can be applied to the data to ensure that they do not violate the model assumption of no recombination. The mutation rate can be estimated as follows, where is the number of mutations found within a randomly selected DNA sequence (per generation), is the effective population size. The coefficient is the product of twice the gene copies in individuals of the population; in the case of diploid, biparentally-inherited genes the appropriate coefficient is 4 whereas for uniparental, haploid genes, such as mitochondrial genes, the coefficient would be 2 but applied to the female effective population size which is, for most species, roughly half of . When considering the length of a DNA sequence, the expected number of mutations is calculated as follows Where k is the length of a DNA sequence and is the probability a mutation will occur at a site. Watterson developed an estimator for mutation rate that incorporates the number of segregating sites (Watterson's estimator). One way to think of the ISM is in how it applies to genome evolution. To understand the ISM as it applies to genome evolution, we must think of this model as it applies to chromosomes. Chromosomes are made up of sites, which are nucleotides represented by either A, C, G, or T. While individual chromosomes are not infinite, we must think of chromosomes as continuous intervals or continuous circles. Multiple assumptions are applied to understanding the ISM in terms of genome evolution: * k breaks are made in these chromosomes, which leaves 2k free ends available. The 2k free ends will rejoin in a new manner rearranging the set of chromosomes (i.e. reciprocal translocation, fusion, fission, inversion, circularized incision, circularized excision). * No break point is ever used twice. * A set of chromosomes can be duplicated or lost. * DNA that never existed before can be observed in the chromosomes, such as horizontal gene transfer of DNA or viral integration. * If the chromosomes become different enough, evolution can form a new species. * Substitutions that alter a single base pair are individually invisible and substitutions occur at a finite rate per site. * The substitution rate is the same for all sites in a species, but is allowed to vary between species (i.e. no molecular clock is assumed). * Instead of thinking about substitutions themselves, think about the effect of the substitution at each point along the chromosome as a continuous increase in evolutionary distance between the previous version of the genome at that site and the next version of the genome at the corresponding site in the descendant. (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 56 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software