About: Genus (mathematics)     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:WikicatAlgebraicCurves, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/c/38Rm68CQDa

In mathematics, genus (plural genera) has a few different, but closely related, meanings. Intuitively, the genus is the number of "holes" of a surface. A sphere has genus 0, while a torus has genus 1.

AttributesValues
rdf:type
rdfs:label
  • Rod plochy (cs)
  • Geschlecht (Fläche) (de)
  • Γένος (μαθηματικά) (el)
  • Genro (matematiko) (eo)
  • Genus (matemáticas) (es)
  • Genus (mathematics) (en)
  • Genre (mathématiques) (fr)
  • Genere (matematica) (it)
  • 種数 (ja)
  • 곡면 종수 (ko)
  • Genus (pl)
  • Genus (wiskunde) (nl)
  • Género (matemática) (pt)
  • Род поверхности (ru)
  • Matematiskt genus (sv)
  • 亏格 (zh)
  • Рід (математика) (uk)
rdfs:comment
  • Στα μαθηματικά, το γένος έχει μερικές διαφορετικές, αλλά στενά συσχετισμένες έννοιες. Η πιο κοινή έννοια, είναι αυτή που ορίζει ότι το γένος μιας (προσανατολισμένης) επιφάνειας, είναι ο αριθμός των "τρυπών" που έχει. (el)
  • En matematiko, vorto genro havas kelkajn malsaman, sed proksime rilatantajn, signifojn: (eo)
  • Unter dem Geschlecht einer kompakten orientierbaren Fläche versteht man in der Topologie die Anzahl der „Löcher“ (oder der „Henkel“) der Fläche. Die Bezeichnung und die Definition gehen auf Alfred Clebsch zurück. Das Geschlecht ist eine topologische Invariante. Der Klassifikationssatz für Flächen besagt, dass geschlossene orientierbare Flächen bis auf Homöomorphie durch ihr Geschlecht klassifiziert werden. (de)
  • In mathematics, genus (plural genera) has a few different, but closely related, meanings. Intuitively, the genus is the number of "holes" of a surface. A sphere has genus 0, while a torus has genus 1. (en)
  • En matemáticas, la palabra latina genus (plural genera; "género" en español) tiene algunos significados diferentes, pero estrechamente relacionados entre sí. La forma más rápida, fácil e intuitiva de introducir el concepto de genus es el número de "orificios" de una superficie.​ Por ejemplo, una esfera tiene genus 0 y un toro tiene genus 1. (es)
  • En mathématiques, le genre est un entier naturel associé à certains objets ; il représente en particulier le nombre d'anses (ou de « trous », selon le point de vue) d'une surface caractéristique de l'objet étudié, si cette surface est orientable. (fr)
  • 위상수학에서 곡면 종수(曲面種數, 영어: genus of a surface)는 연결 콤팩트 유향 곡면을 완전히 분류하는, 음이 아닌 정수 값의 불변량이다. (ko)
  • 種数(しゅすう、英: genus; ジーナス)は、数学用語で、分野によって似通っているがいくらか異なる意味を持つ。なお、genus の複数形は genera。 (ja)
  • In matematica, il genere indica una particolare modalità di classificazione di enti geometrici. Le definizioni variano a seconda dell'ente a cui sono applicate, sono tuttavia in stretta relazione fra di loro. (it)
  • In de wiskunde heeft het begrip genus een aantal verschillende, maar nauw verwante betekenissen. (nl)
  • Род поверхности — топологическая характеристика замкнутой поверхности .Определяется как максимальное число замкнутых непересекающихся кривых не разделяющих поверхность на части. (ru)
  • Em topologia, o género de uma superfície é o número de buracos desta. (pt)
  • Genus – niezmiennik topologiczny, liczba całkowita charakteryzująca rozmaitość topologiczną równa liczbie otworów w rozmaitości. Tak więc dla sfery jest to 0, dla torusa 1, dla 3 itp. Genus powiązany jest z charakterystyką Eulera wzorem dla powierzchni orientowalnych, dla nieorientowalnych zachodzi właściwość . * Genus powierzchni orientowalnych * sfera(genus 0) * torus(genus 1) * (genus 2) * (genus 3) * Genus powierzchni nieorientowalnych * (genus 1) * butelka Kleina(genus 2) (pl)
  • Genus är ett begrepp inom topologin i den moderna matematiken. (sv)
  • 数学上,亏格(genus)有几个不同但密切相关的意思。最常见的概念是(有方向的)曲面的亏格,是其具有的“孔”的数量,因此,一个球体的亏格为0,而一个圆环的亏格为1。 (zh)
  • У топології, родом замкнутої орієнтованої поверхні називається її «число ручок», тобто таке число , що дана поверхня гомеоморфна сфері з ручками. На наступних малюнках зображені поверхні роду 0 (сфера), 1 (тор), 2 і 3: * Рід замкнутої орієнтованої поверхні * рід 0 * рід 1 * рід 2 * рід 3 (uk)
  • Rod plochy (genus topologie) je číslo, které charakterizuje danou topologii z hlediska počtu „děr“ nebo „držadel“. Genus se určuje pomocí počtu skupin křivek, které nelze stáhnout do bodu (jsou natažené kolem „díry“ ve 2D či „držadla“ ve 3D, nejjednodušším „držadlem“ je pneumatika - toroid). * Rod orientovatelných ploch * Příklad plochy rodu 0 * Příklad plochy rodu 1 * Příklad plochy rodu 2 * Příklad plochy rodu 3 (cs)
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/Double_torus_illustration.png
  • http://commons.wikimedia.org/wiki/Special:FilePath/Mug_and_Torus_morph.gif
  • http://commons.wikimedia.org/wiki/Special:FilePath/Sphere_filled_blue.svg
  • http://commons.wikimedia.org/wiki/Special:FilePath/Torus_illustration.png
  • http://commons.wikimedia.org/wiki/Special:FilePath/Triple_torus_illustration.png
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Sep 2 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 62 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software