About: Gauss's inequality     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:WikicatProbabilisticInequalities, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FGauss%27s_inequality&graph=http%3A%2F%2Fdbpedia.org&graph=http%3A%2F%2Fdbpedia.org

In probability theory, Gauss's inequality (or the Gauss inequality) gives an upper bound on the probability that a unimodal random variable lies more than any given distance from its mode. Let X be a unimodal random variable with mode m, and let τ 2 be the expected value of (X − m)2. (τ 2 can also be expressed as (μ − m)2 + σ 2, where μ and σ are the mean and standard deviation of X.) Then for any positive value of k, The theorem was first proved by Carl Friedrich Gauss in 1823.

AttributesValues
rdf:type
rdfs:label
  • Gauss's inequality (en)
  • Неравенство Гаусса (ru)
rdfs:comment
  • In probability theory, Gauss's inequality (or the Gauss inequality) gives an upper bound on the probability that a unimodal random variable lies more than any given distance from its mode. Let X be a unimodal random variable with mode m, and let τ 2 be the expected value of (X − m)2. (τ 2 can also be expressed as (μ − m)2 + σ 2, where μ and σ are the mean and standard deviation of X.) Then for any positive value of k, The theorem was first proved by Carl Friedrich Gauss in 1823. (en)
  • В теории вероятностей неравенство Гаусса даёт верхнюю границу вероятности того, что одномодальная случайная величина выходит за пределы интервала с центром в её моде. Пусть X — одномодальная случайная величина с модой m и пусть τ 2 есть математическое ожидание (X − m)2. (τ2 может также быть выражено как (μ − m)2 + σ2, где μ и σ являются средним значением и стандартным отклонением X.) Эта теорема была впервые доказана Гауссом в 1823 году. (ru)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • In probability theory, Gauss's inequality (or the Gauss inequality) gives an upper bound on the probability that a unimodal random variable lies more than any given distance from its mode. Let X be a unimodal random variable with mode m, and let τ 2 be the expected value of (X − m)2. (τ 2 can also be expressed as (μ − m)2 + σ 2, where μ and σ are the mean and standard deviation of X.) Then for any positive value of k, The theorem was first proved by Carl Friedrich Gauss in 1823. (en)
  • В теории вероятностей неравенство Гаусса даёт верхнюю границу вероятности того, что одномодальная случайная величина выходит за пределы интервала с центром в её моде. Пусть X — одномодальная случайная величина с модой m и пусть τ 2 есть математическое ожидание (X − m)2. (τ2 может также быть выражено как (μ − m)2 + σ2, где μ и σ являются средним значением и стандартным отклонением X.) Эта теорема была впервые доказана Гауссом в 1823 году. (ru)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 58 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software