About: Fast Walsh–Hadamard transform     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FFast_Walsh%E2%80%93Hadamard_transform&graph=http%3A%2F%2Fdbpedia.org&graph=http%3A%2F%2Fdbpedia.org

In computational mathematics, the Hadamard ordered fast Walsh–Hadamard transform (FWHTh) is an efficient algorithm to compute the Walsh–Hadamard transform (WHT). A naive implementation of the WHT of order would have a computational complexity of O. The FWHTh requires only additions or subtractions. The FWHTh is a divide-and-conquer algorithm that recursively breaks down a WHT of size into two smaller WHTs of size . This implementation follows the recursive definition of the Hadamard matrix : The normalization factors for each stage may be grouped together or even omitted.

AttributesValues
rdfs:label
  • Transformada ràpida de Walsh-Hadamard (ca)
  • Fast Walsh–Hadamard transform (en)
  • 快速沃爾什轉換 (zh)
rdfs:comment
  • 在計算數學中,一個與阿達馬變換有高度相關的快速沃爾什轉換(英語:fast Walsh–Hadamard transform,FWHTh)是一個十分有效率的演算法,目的是計算阿達馬變換。一個直觀且基本的沃爾什轉換,他的計算複雜度 大約是 。而快速沃爾什轉換只需要 個加法或是減法即可。 而快速沃爾什轉換是一個分而治之的演算法,是一個常見的遞迴方法,將大小為 的沃爾什轉換拆成兩個大小為 的沃爾什轉換。這樣的寫法是根據阿達馬矩陣 的遞迴定義: 其中 的正規化項可以提出或省略掉。 沃爾什矩陣,又叫沃爾什序列,快速沃爾什轉換FWHTw,就是用上面的作法計算以後,把輸出結果排成序列。 (zh)
  • In computational mathematics, the Hadamard ordered fast Walsh–Hadamard transform (FWHTh) is an efficient algorithm to compute the Walsh–Hadamard transform (WHT). A naive implementation of the WHT of order would have a computational complexity of O. The FWHTh requires only additions or subtractions. The FWHTh is a divide-and-conquer algorithm that recursively breaks down a WHT of size into two smaller WHTs of size . This implementation follows the recursive definition of the Hadamard matrix : The normalization factors for each stage may be grouped together or even omitted. (en)
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/1010_0110_Walsh_spectrum_(fast_WHT).svg
  • http://commons.wikimedia.org/wiki/Special:FilePath/Fast_walsh_hadamard_transform_8.svg
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
thumbnail
has abstract
  • In computational mathematics, the Hadamard ordered fast Walsh–Hadamard transform (FWHTh) is an efficient algorithm to compute the Walsh–Hadamard transform (WHT). A naive implementation of the WHT of order would have a computational complexity of O. The FWHTh requires only additions or subtractions. The FWHTh is a divide-and-conquer algorithm that recursively breaks down a WHT of size into two smaller WHTs of size . This implementation follows the recursive definition of the Hadamard matrix : The normalization factors for each stage may be grouped together or even omitted. The sequency-ordered, also known as Walsh-ordered, fast Walsh–Hadamard transform, FWHTw, is obtained by computing the FWHTh as above, and then rearranging the outputs. A simple fast nonrecursive implementation of the Walsh–Hadamard transform follows from decomposition of the Hadamard transform matrix as , where A is m-th root of . (en)
  • 在計算數學中,一個與阿達馬變換有高度相關的快速沃爾什轉換(英語:fast Walsh–Hadamard transform,FWHTh)是一個十分有效率的演算法,目的是計算阿達馬變換。一個直觀且基本的沃爾什轉換,他的計算複雜度 大約是 。而快速沃爾什轉換只需要 個加法或是減法即可。 而快速沃爾什轉換是一個分而治之的演算法,是一個常見的遞迴方法,將大小為 的沃爾什轉換拆成兩個大小為 的沃爾什轉換。這樣的寫法是根據阿達馬矩陣 的遞迴定義: 其中 的正規化項可以提出或省略掉。 沃爾什矩陣,又叫沃爾什序列,快速沃爾什轉換FWHTw,就是用上面的作法計算以後,把輸出結果排成序列。 (zh)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is Wikipage disambiguates of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Dec 5 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (62 GB total memory, 49 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software