In computational mathematics, the Hadamard ordered fast Walsh–Hadamard transform (FWHTh) is an efficient algorithm to compute the Walsh–Hadamard transform (WHT). A naive implementation of the WHT of order would have a computational complexity of O. The FWHTh requires only additions or subtractions. The FWHTh is a divide-and-conquer algorithm that recursively breaks down a WHT of size into two smaller WHTs of size . This implementation follows the recursive definition of the Hadamard matrix : The normalization factors for each stage may be grouped together or even omitted.
Attributes | Values |
---|
rdfs:label
| - Transformada ràpida de Walsh-Hadamard (ca)
- Fast Walsh–Hadamard transform (en)
- 快速沃爾什轉換 (zh)
|
rdfs:comment
| - 在計算數學中,一個與阿達馬變換有高度相關的快速沃爾什轉換(英語:fast Walsh–Hadamard transform,FWHTh)是一個十分有效率的演算法,目的是計算阿達馬變換。一個直觀且基本的沃爾什轉換,他的計算複雜度 大約是 。而快速沃爾什轉換只需要 個加法或是減法即可。 而快速沃爾什轉換是一個分而治之的演算法,是一個常見的遞迴方法,將大小為 的沃爾什轉換拆成兩個大小為 的沃爾什轉換。這樣的寫法是根據阿達馬矩陣 的遞迴定義: 其中 的正規化項可以提出或省略掉。 沃爾什矩陣,又叫沃爾什序列,快速沃爾什轉換FWHTw,就是用上面的作法計算以後,把輸出結果排成序列。 (zh)
- In computational mathematics, the Hadamard ordered fast Walsh–Hadamard transform (FWHTh) is an efficient algorithm to compute the Walsh–Hadamard transform (WHT). A naive implementation of the WHT of order would have a computational complexity of O. The FWHTh requires only additions or subtractions. The FWHTh is a divide-and-conquer algorithm that recursively breaks down a WHT of size into two smaller WHTs of size . This implementation follows the recursive definition of the Hadamard matrix : The normalization factors for each stage may be grouped together or even omitted. (en)
|
foaf:depiction
| |
dcterms:subject
| |
Wikipage page ID
| |
Wikipage revision ID
| |
Link from a Wikipage to another Wikipage
| |
Link from a Wikipage to an external page
| |
sameAs
| |
dbp:wikiPageUsesTemplate
| |
thumbnail
| |
has abstract
| - In computational mathematics, the Hadamard ordered fast Walsh–Hadamard transform (FWHTh) is an efficient algorithm to compute the Walsh–Hadamard transform (WHT). A naive implementation of the WHT of order would have a computational complexity of O. The FWHTh requires only additions or subtractions. The FWHTh is a divide-and-conquer algorithm that recursively breaks down a WHT of size into two smaller WHTs of size . This implementation follows the recursive definition of the Hadamard matrix : The normalization factors for each stage may be grouped together or even omitted. The sequency-ordered, also known as Walsh-ordered, fast Walsh–Hadamard transform, FWHTw, is obtained by computing the FWHTh as above, and then rearranging the outputs. A simple fast nonrecursive implementation of the Walsh–Hadamard transform follows from decomposition of the Hadamard transform matrix as , where A is m-th root of . (en)
- 在計算數學中,一個與阿達馬變換有高度相關的快速沃爾什轉換(英語:fast Walsh–Hadamard transform,FWHTh)是一個十分有效率的演算法,目的是計算阿達馬變換。一個直觀且基本的沃爾什轉換,他的計算複雜度 大約是 。而快速沃爾什轉換只需要 個加法或是減法即可。 而快速沃爾什轉換是一個分而治之的演算法,是一個常見的遞迴方法,將大小為 的沃爾什轉換拆成兩個大小為 的沃爾什轉換。這樣的寫法是根據阿達馬矩陣 的遞迴定義: 其中 的正規化項可以提出或省略掉。 沃爾什矩陣,又叫沃爾什序列,快速沃爾什轉換FWHTw,就是用上面的作法計算以後,把輸出結果排成序列。 (zh)
|
prov:wasDerivedFrom
| |
page length (characters) of wiki page
| |
foaf:isPrimaryTopicOf
| |
is Link from a Wikipage to another Wikipage
of | |
is Wikipage redirect
of | |
is Wikipage disambiguates
of | |
is foaf:primaryTopic
of | |