About: Chaperone code     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FChaperone_code&graph=http%3A%2F%2Fdbpedia.org&graph=http%3A%2F%2Fdbpedia.org

The chaperone code refers to post-translational modifications of molecular chaperones that control protein folding. Whilst the genetic code specifies how DNA makes proteins, and the histone code regulates histone-DNA interactions, the chaperone code controls how proteins are folded to produce a functional proteome. The chaperone code concept posits that combinations of post-translational modifications at the surface of chaperones, including phosphorylation, acetylation, methylation, ubiquitination, control protein folding/unfolding and protein complex assembly/disassembly by modulating:

AttributesValues
rdfs:label
  • Chaperone code (en)
rdfs:comment
  • The chaperone code refers to post-translational modifications of molecular chaperones that control protein folding. Whilst the genetic code specifies how DNA makes proteins, and the histone code regulates histone-DNA interactions, the chaperone code controls how proteins are folded to produce a functional proteome. The chaperone code concept posits that combinations of post-translational modifications at the surface of chaperones, including phosphorylation, acetylation, methylation, ubiquitination, control protein folding/unfolding and protein complex assembly/disassembly by modulating: (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • The chaperone code refers to post-translational modifications of molecular chaperones that control protein folding. Whilst the genetic code specifies how DNA makes proteins, and the histone code regulates histone-DNA interactions, the chaperone code controls how proteins are folded to produce a functional proteome. The chaperone code refers to the combinatorial array of post-translational modifications (enzymes add chemical modifications to amino acids that change their properties) —i.e. phosphorylation, acetylation, ubiquitination, methylation, etc.—that are added to molecular chaperones to modulate their activity. Molecular chaperones are proteins specialized in folding and unfolding of the other cellular proteins, and the assembly and dismantling of protein complexes. This is critical in the regulation of protein-protein interactions and many cellular functions. Because post-translational modifications are marks that can be added and removed rapidly, they provide an efficient mechanism to explain the plasticity observed in proteome organization during cell growth and development. The chaperone code concept posits that combinations of post-translational modifications at the surface of chaperones, including phosphorylation, acetylation, methylation, ubiquitination, control protein folding/unfolding and protein complex assembly/disassembly by modulating: 1) chaperone-substrate affinity and specificity 2) chaperone ATPase and therefore its refolding activity 3) chaperone localization 4) chaperone-co-chaperone interaction. (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (62 GB total memory, 43 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software