This HTML5 document contains 69 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n7https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
dbpedia-svhttp://sv.dbpedia.org/resource/
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
goldhttp://purl.org/linguistics/gold/
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Cyclic_polytope
dbo:wikiPageWikiLink
dbr:Stanley–Reisner_ring
Subject Item
dbr:Quasitoric_manifold
dbo:wikiPageWikiLink
dbr:Stanley–Reisner_ring
Subject Item
dbr:Glossary_of_commutative_algebra
dbo:wikiPageWikiLink
dbr:Stanley–Reisner_ring
Subject Item
dbr:Monomial_ideal
dbo:wikiPageWikiLink
dbr:Stanley–Reisner_ring
Subject Item
dbr:Upper_bound_theorem
dbo:wikiPageWikiLink
dbr:Stanley–Reisner_ring
Subject Item
dbr:Combinatorial_commutative_algebra
dbo:wikiPageWikiLink
dbr:Stanley–Reisner_ring
Subject Item
dbr:H-vector
dbo:wikiPageWikiLink
dbr:Stanley–Reisner_ring
Subject Item
dbr:Abstract_simplicial_complex
dbo:wikiPageWikiLink
dbr:Stanley–Reisner_ring
Subject Item
dbr:Dimension_of_an_algebraic_variety
dbo:wikiPageWikiLink
dbr:Stanley–Reisner_ring
Subject Item
dbr:List_of_algebraic_constructions
dbo:wikiPageWikiLink
dbr:Stanley–Reisner_ring
Subject Item
dbr:Ring_(mathematics)
dbo:wikiPageWikiLink
dbr:Stanley–Reisner_ring
Subject Item
dbr:Stanley-Reisner_ring
dbo:wikiPageWikiLink
dbr:Stanley–Reisner_ring
dbo:wikiPageRedirects
dbr:Stanley–Reisner_ring
Subject Item
dbr:Face_ring
dbo:wikiPageWikiLink
dbr:Stanley–Reisner_ring
dbo:wikiPageRedirects
dbr:Stanley–Reisner_ring
Subject Item
dbr:Nakai_conjecture
dbo:wikiPageWikiLink
dbr:Stanley–Reisner_ring
Subject Item
dbr:Toric_stack
dbo:wikiPageWikiLink
dbr:Stanley–Reisner_ring
Subject Item
dbr:Stanley–Reisner_ring
rdfs:label
Stanley–Reisnerring Stanley–Reisner ring
rdfs:comment
Inom matematiken är en Stanley–Reisnerring ett kvot av en polynomalgebra över en kropp med ett kvadratfritt . Konstruktionen av Stanley–Reisnerringar är ett grundläggande verktyg i och . Dears egenskaper studerades av , och under det tidiga 1970-talet. In mathematics, a Stanley–Reisner ring, or face ring, is a quotient of a polynomial algebra over a field by a square-free monomial ideal. Such ideals are described more geometrically in terms of finite simplicial complexes. The Stanley–Reisner ring construction is a basic tool within algebraic combinatorics and combinatorial commutative algebra. Its properties were investigated by Richard Stanley, Melvin Hochster, and Gerald Reisner in the early 1970s.
dcterms:subject
dbc:Commutative_algebra dbc:Algebraic_combinatorics
dbo:wikiPageID
24394535
dbo:wikiPageRevisionID
882340025
dbo:wikiPageWikiLink
dbr:Homological_algebra dbr:N-sphere dbr:Field_(algebra) dbr:Monomial_ideal dbr:Cambridge_University_Press dbc:Commutative_algebra dbr:Algebraic_combinatorics dbr:Melvin_Hochster dbr:Upper_Bound_Conjecture dbr:Simplex dbc:Algebraic_combinatorics dbr:Homeomorphism dbr:Springer-Verlag dbr:Simplicial_homology dbr:Simplicial_sphere dbr:Combinatorial_commutative_algebra dbr:Cohen–Macaulay_ring dbr:Singular_homology dbr:Krull_dimension dbr:Polynomial_ring dbr:Tensor_product dbr:Simplicial_complex dbr:Ideal_(ring_theory) dbr:Hilbert_series dbr:Richard_P._Stanley dbr:Commutative_algebra dbr:Abstract_simplicial_complex dbr:Geometric_realization
owl:sameAs
n7:4vT2q freebase:m.09ghdw6 dbpedia-sv:Stanley–Reisnerring wikidata:Q7600086
dbp:wikiPageUsesTemplate
dbt:Reflist dbt:Cite_book dbt:Springer
dbp:id
s/s130520
dbp:title
Stanley–Reisner ring
dbo:abstract
Inom matematiken är en Stanley–Reisnerring ett kvot av en polynomalgebra över en kropp med ett kvadratfritt . Konstruktionen av Stanley–Reisnerringar är ett grundläggande verktyg i och . Dears egenskaper studerades av , och under det tidiga 1970-talet. In mathematics, a Stanley–Reisner ring, or face ring, is a quotient of a polynomial algebra over a field by a square-free monomial ideal. Such ideals are described more geometrically in terms of finite simplicial complexes. The Stanley–Reisner ring construction is a basic tool within algebraic combinatorics and combinatorial commutative algebra. Its properties were investigated by Richard Stanley, Melvin Hochster, and Gerald Reisner in the early 1970s.
gold:hypernym
dbr:Quotient
prov:wasDerivedFrom
wikipedia-en:Stanley–Reisner_ring?oldid=882340025&ns=0
dbo:wikiPageLength
9093
foaf:isPrimaryTopicOf
wikipedia-en:Stanley–Reisner_ring
Subject Item
wikipedia-en:Stanley–Reisner_ring
foaf:primaryTopic
dbr:Stanley–Reisner_ring