This HTML5 document contains 77 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dbpedia-dehttp://de.dbpedia.org/resource/
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n19https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
dbpedia-ithttp://it.dbpedia.org/resource/
dbpedia-frhttp://fr.dbpedia.org/resource/
wikipedia-enhttp://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
dbphttp://dbpedia.org/property/
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/
dbpedia-jahttp://ja.dbpedia.org/resource/

Statements

Subject Item
dbr:Resolvent_formalism
dbo:wikiPageWikiLink
dbr:Hille–Yosida_theorem
Subject Item
dbr:Einar_Hille
dbo:wikiPageWikiLink
dbr:Hille–Yosida_theorem
dbp:knownFor
dbr:Hille–Yosida_theorem
dbo:knownFor
dbr:Hille–Yosida_theorem
Subject Item
dbr:Stone–von_Neumann_theorem
dbo:wikiPageWikiLink
dbr:Hille–Yosida_theorem
Subject Item
dbr:Stone's_theorem_on_one-parameter_unitary_groups
dbo:wikiPageWikiLink
dbr:Hille–Yosida_theorem
Subject Item
dbr:Hille–Yosida_theorem
rdf:type
yago:Proposition106750804 yago:Communication100033020 yago:WikicatTheoremsInFunctionalAnalysis yago:Theorem106752293 yago:Abstraction100002137 yago:Message106598915 yago:Statement106722453 yago:WikicatMathematicalTheorems
rdfs:label
Satz von Hille-Yosida Teorema di Hille-Yosida Théorème de Hille-Yosida Hille–Yosida theorem ヒレ–吉田の定理
rdfs:comment
In functional analysis, the Hille–Yosida theorem characterizes the generators of strongly continuous one-parameter semigroups of linear operators on Banach spaces. It is sometimes stated for the special case of contraction semigroups, with the general case being called the Feller–Miyadera–Phillips theorem (after William Feller, Isao Miyadera, and Ralph Phillips). The contraction semigroup case is widely used in the theory of Markov processes. In other scenarios, the closely related Lumer–Phillips theorem is often more useful in determining whether a given operator generates a strongly continuous contraction semigroup. The theorem is named after the mathematicians Einar Hille and Kōsaku Yosida who independently discovered the result around 1948. 数学の関数解析学の分野におけるヒレ–吉田の定理(ヒレ–よしだのていり、英: Hille–Yosida theorem)とは、バナッハ空間上の線形作用素からなる強連続1パラメータ半群の生成素を特徴づける定理である。しばしば特別な場合として縮小半群のために適用され、また、一般的な場合としてフェラー-宮寺-フィリップスの定理(、宮寺功、ラルフ・フィリップスの名にちなむ)と呼ばれる定理が存在する。縮小半群の場合は、マルコフ過程の理論において広く研究されている。その他の場面では、この定理と関係の深いルーマー–フィリップスの定理が、「与えられた作用素が強連続な縮小半群を生成するかどうか」を見極める上で有用となる。ヒレ-吉田の定理は数学者のと吉田耕作の名にちなみ、1948年前後の彼らの研究によってそれぞれ独立に発見された。 In analisi funzionale, il teorema di Hille-Yosida caratterizza i generatori di semigruppi a un parametro fortemente continui di operatori lineari su spazi di Banach. A volte viene indicato per il caso speciale dei semigruppi di contrazione, con il caso generale che viene chiamato il teorema di Feller-Miyadera-Phillips (da William Feller, Isao Miyadera e Ralph Phillips). Il caso del semigruppo di contrazione è ampiamente usato nella teoria dei processi di Markov. In altri scenari, il teorema di Lumer-Phillips strettamente correlato è spesso più utile nel determinare se un dato operatore genera un semigruppo di contrazione fortemente continuo. Il teorema prende il nome dai matematici Einar Hille e Kōsaku Yosida che scoprirono indipendentemente il risultato intorno al 1948. En théorie des semi-groupes, le théorème de Hille-Yosida est un outil puissant et fondamental reliant les propriétés de dissipation de l'énergie d'un opérateur non borné à l'existence et l'unicité et la régularité des solutions d'une équation différentielle (E) . Ce résultat permet notamment de donner l'existence, l'unicité et la régularité des solutions d'une équation aux dérivées partielles plus efficacement que le théorème de Cauchy-Lipschitz-Picard, plus adapté aux équations différentielles ordinaires.
dcterms:subject
dbc:Semigroup_theory dbc:Theorems_in_functional_analysis
dbo:wikiPageID
1578212
dbo:wikiPageRevisionID
1084606113
dbo:wikiPageWikiLink
dbr:Dense_(topology) dbr:Stone's_theorem_on_one-parameter_unitary_groups dbc:Semigroup_theory dbr:Unbounded_operator dbr:Mathematician dbr:Contraction_semigroup dbr:Linear_subspace dbr:Closed_linear_operator dbr:Resolvent_operator dbr:Resolvent_set dbr:Kōsaku_Yosida dbr:One-parameter_semigroup dbr:C0-semigroup dbr:Markov_process dbr:C0_semigroup dbr:Banach_space dbr:Lumer–Phillips_theorem dbr:William_Feller dbr:Functional_analysis dbc:Theorems_in_functional_analysis dbr:Einar_Hille dbr:Integers dbr:Linear_operator
owl:sameAs
freebase:m.05cxht dbpedia-de:Satz_von_Hille-Yosida dbpedia-ja:ヒレ–吉田の定理 dbpedia-fr:Théorème_de_Hille-Yosida wikidata:Q974405 dbpedia-it:Teorema_di_Hille-Yosida n19:577vX
dbp:wikiPageUsesTemplate
dbt:Functional_analysis dbt:Reflist dbt:Citation dbt:Main_article
dbo:abstract
En théorie des semi-groupes, le théorème de Hille-Yosida est un outil puissant et fondamental reliant les propriétés de dissipation de l'énergie d'un opérateur non borné à l'existence et l'unicité et la régularité des solutions d'une équation différentielle (E) . Ce résultat permet notamment de donner l'existence, l'unicité et la régularité des solutions d'une équation aux dérivées partielles plus efficacement que le théorème de Cauchy-Lipschitz-Picard, plus adapté aux équations différentielles ordinaires. In analisi funzionale, il teorema di Hille-Yosida caratterizza i generatori di semigruppi a un parametro fortemente continui di operatori lineari su spazi di Banach. A volte viene indicato per il caso speciale dei semigruppi di contrazione, con il caso generale che viene chiamato il teorema di Feller-Miyadera-Phillips (da William Feller, Isao Miyadera e Ralph Phillips). Il caso del semigruppo di contrazione è ampiamente usato nella teoria dei processi di Markov. In altri scenari, il teorema di Lumer-Phillips strettamente correlato è spesso più utile nel determinare se un dato operatore genera un semigruppo di contrazione fortemente continuo. Il teorema prende il nome dai matematici Einar Hille e Kōsaku Yosida che scoprirono indipendentemente il risultato intorno al 1948. 数学の関数解析学の分野におけるヒレ–吉田の定理(ヒレ–よしだのていり、英: Hille–Yosida theorem)とは、バナッハ空間上の線形作用素からなる強連続1パラメータ半群の生成素を特徴づける定理である。しばしば特別な場合として縮小半群のために適用され、また、一般的な場合としてフェラー-宮寺-フィリップスの定理(、宮寺功、ラルフ・フィリップスの名にちなむ)と呼ばれる定理が存在する。縮小半群の場合は、マルコフ過程の理論において広く研究されている。その他の場面では、この定理と関係の深いルーマー–フィリップスの定理が、「与えられた作用素が強連続な縮小半群を生成するかどうか」を見極める上で有用となる。ヒレ-吉田の定理は数学者のと吉田耕作の名にちなみ、1948年前後の彼らの研究によってそれぞれ独立に発見された。 In functional analysis, the Hille–Yosida theorem characterizes the generators of strongly continuous one-parameter semigroups of linear operators on Banach spaces. It is sometimes stated for the special case of contraction semigroups, with the general case being called the Feller–Miyadera–Phillips theorem (after William Feller, Isao Miyadera, and Ralph Phillips). The contraction semigroup case is widely used in the theory of Markov processes. In other scenarios, the closely related Lumer–Phillips theorem is often more useful in determining whether a given operator generates a strongly continuous contraction semigroup. The theorem is named after the mathematicians Einar Hille and Kōsaku Yosida who independently discovered the result around 1948.
prov:wasDerivedFrom
wikipedia-en:Hille–Yosida_theorem?oldid=1084606113&ns=0
dbo:wikiPageLength
5999
foaf:isPrimaryTopicOf
wikipedia-en:Hille–Yosida_theorem
Subject Item
dbr:C0-semigroup
dbo:wikiPageWikiLink
dbr:Hille–Yosida_theorem
Subject Item
dbr:List_of_theorems
dbo:wikiPageWikiLink
dbr:Hille–Yosida_theorem
Subject Item
dbr:Hille-Yosida_theorem
dbo:wikiPageWikiLink
dbr:Hille–Yosida_theorem
dbo:wikiPageRedirects
dbr:Hille–Yosida_theorem
Subject Item
dbr:Hille-Yoshida_theorem
dbo:wikiPageWikiLink
dbr:Hille–Yosida_theorem
dbo:wikiPageRedirects
dbr:Hille–Yosida_theorem
Subject Item
dbr:Hille-Yosida
dbo:wikiPageWikiLink
dbr:Hille–Yosida_theorem
dbo:wikiPageRedirects
dbr:Hille–Yosida_theorem
Subject Item
wikipedia-en:Hille–Yosida_theorem
foaf:primaryTopic
dbr:Hille–Yosida_theorem