dbo:abstract
|
- In der Variationsrechnung bezeichnet Γ-Konvergenz (Gamma-Konvergenz) eine spezielle Konvergenzart für Funktionale. Sie wurde von Ennio de Giorgi eingeführt. Ursprünglich wurde sie als G-Konvergenz bezeichnet, da sie für greensche Funktionale entwickelt wurde. Der Begriff Γ-Konvergenz entstand durch die Verallgemeinerung dieses Konvergenzbegriffes. (de)
- In the field of mathematical analysis for the calculus of variations, Γ-convergence (Gamma-convergence) is a notion of convergence for functionals. It was introduced by Ennio de Giorgi. (en)
- Γ-сходимость (Гамма-сходимость) – концепция сходимости функционалов, возникающая в вариационном исчислении, а также при изучении дифференциальных уравнений в частных производных. (ru)
|
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 4916 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
gold:hypernym
| |
rdf:type
| |
rdfs:comment
|
- In der Variationsrechnung bezeichnet Γ-Konvergenz (Gamma-Konvergenz) eine spezielle Konvergenzart für Funktionale. Sie wurde von Ennio de Giorgi eingeführt. Ursprünglich wurde sie als G-Konvergenz bezeichnet, da sie für greensche Funktionale entwickelt wurde. Der Begriff Γ-Konvergenz entstand durch die Verallgemeinerung dieses Konvergenzbegriffes. (de)
- In the field of mathematical analysis for the calculus of variations, Γ-convergence (Gamma-convergence) is a notion of convergence for functionals. It was introduced by Ennio de Giorgi. (en)
- Γ-сходимость (Гамма-сходимость) – концепция сходимости функционалов, возникающая в вариационном исчислении, а также при изучении дифференциальных уравнений в частных производных. (ru)
|
rdfs:label
|
- Γ-Konvergenz (de)
- Гамма-сходимость (ru)
- Γ-convergence (en)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |