In mathematics, Tsen's theorem states that a function field K of an algebraic curve over an algebraically closed field is quasi-algebraically closed (i.e., C1). This implies that the Brauer group of any such field vanishes, and more generally that all the Galois cohomology groups H i(K, K*) vanish for i ≥ 1. This result is used to calculate the étale cohomology groups of an algebraic curve. The theorem was published by Chiungtze C. Tsen in 1933.
Property | Value |
---|---|
dbo:abstract |
|
dbo:wikiPageExternalLink | |
dbo:wikiPageID |
|
dbo:wikiPageLength |
|
dbo:wikiPageRevisionID |
|
dbo:wikiPageWikiLink |
|
dbp:wikiPageUsesTemplate | |
dcterms:subject | |
rdf:type | |
rdfs:comment |
|
rdfs:label |
|
owl:sameAs | |
prov:wasDerivedFrom | |
foaf:isPrimaryTopicOf | |
is dbo:wikiPageDisambiguates of | |
is dbo:wikiPageWikiLink of | |
is foaf:primaryTopic of |