An Entity of Type: Abstraction100002137, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org:8891

In mathematics, Tsen's theorem states that a function field K of an algebraic curve over an algebraically closed field is quasi-algebraically closed (i.e., C1). This implies that the Brauer group of any such field vanishes, and more generally that all the Galois cohomology groups H i(K, K*) vanish for i ≥ 1. This result is used to calculate the étale cohomology groups of an algebraic curve. The theorem was published by Chiungtze C. Tsen in 1933.

Property Value
dbo:abstract
  • In mathematics, Tsen's theorem states that a function field K of an algebraic curve over an algebraically closed field is quasi-algebraically closed (i.e., C1). This implies that the Brauer group of any such field vanishes, and more generally that all the Galois cohomology groups H i(K, K*) vanish for i ≥ 1. This result is used to calculate the étale cohomology groups of an algebraic curve. The theorem was published by Chiungtze C. Tsen in 1933. (en)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 10129446 (xsd:integer)
dbo:wikiPageLength
  • 2181 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1058789589 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • In mathematics, Tsen's theorem states that a function field K of an algebraic curve over an algebraically closed field is quasi-algebraically closed (i.e., C1). This implies that the Brauer group of any such field vanishes, and more generally that all the Galois cohomology groups H i(K, K*) vanish for i ≥ 1. This result is used to calculate the étale cohomology groups of an algebraic curve. The theorem was published by Chiungtze C. Tsen in 1933. (en)
rdfs:label
  • Tsen's theorem (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License