dbo:abstract
|
- Der Satz von Sperner ist ein mathematischer Satz, welcher der diskreten Mathematik zugerechnet wird. Emanuel Sperner hat ihn, ausgehend von einer Anregung seines Doktorvaters Otto Schreier, im Jahre 1927 gefunden und 1928 in der Mathematischen Zeitschrift veröffentlicht. Der Satz behandelt den engen Zusammenhang zwischen den Antiketten der Potenzmenge einer endlichen Menge und den sogenannten Binomialkoeffizienten. Er wurde zum Ausgangspunkt eines Zweiges der diskreten Mathematik, der sogenannten Spernertheorie (englisch Sperner theory). Zum Satz von Sperner gibt es verschiedene Beweise und eine große Anzahl von verwandten Resultaten. (de)
- Sperner's theorem, in discrete mathematics, describes the largest possible families of finite sets none of which contain any other sets in the family. It is one of the central results in extremal set theory. It is named after Emanuel Sperner, who published it in 1928. This result is sometimes called Sperner's lemma, but the name "Sperner's lemma" also refers to an unrelated result on coloring triangulations. To differentiate the two results, the result on the size of a Sperner family is now more commonly known as Sperner's theorem. (en)
- 슈페르너의 정리(독일어: Satz von Sperner, Sperner's theorem, -定理)는 의 기초적인 정리로, 독일 수학자 (독일어: Emmanuel Sperner)가 제시하였다. 이 정리는 수학에서 다루는 가장 기본적인 대상 중 하나인 집합의 개수에 관해 조합론적 기법을 전개할 수 있음을 보였다는 점에서 의미가 있다. (ko)
|
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 12508 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:first
| |
dbp:id
| |
dbp:last
| |
dbp:title
| |
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
rdf:type
| |
rdfs:comment
|
- Der Satz von Sperner ist ein mathematischer Satz, welcher der diskreten Mathematik zugerechnet wird. Emanuel Sperner hat ihn, ausgehend von einer Anregung seines Doktorvaters Otto Schreier, im Jahre 1927 gefunden und 1928 in der Mathematischen Zeitschrift veröffentlicht. Der Satz behandelt den engen Zusammenhang zwischen den Antiketten der Potenzmenge einer endlichen Menge und den sogenannten Binomialkoeffizienten. Er wurde zum Ausgangspunkt eines Zweiges der diskreten Mathematik, der sogenannten Spernertheorie (englisch Sperner theory). Zum Satz von Sperner gibt es verschiedene Beweise und eine große Anzahl von verwandten Resultaten. (de)
- Sperner's theorem, in discrete mathematics, describes the largest possible families of finite sets none of which contain any other sets in the family. It is one of the central results in extremal set theory. It is named after Emanuel Sperner, who published it in 1928. This result is sometimes called Sperner's lemma, but the name "Sperner's lemma" also refers to an unrelated result on coloring triangulations. To differentiate the two results, the result on the size of a Sperner family is now more commonly known as Sperner's theorem. (en)
- 슈페르너의 정리(독일어: Satz von Sperner, Sperner's theorem, -定理)는 의 기초적인 정리로, 독일 수학자 (독일어: Emmanuel Sperner)가 제시하였다. 이 정리는 수학에서 다루는 가장 기본적인 대상 중 하나인 집합의 개수에 관해 조합론적 기법을 전개할 수 있음을 보였다는 점에서 의미가 있다. (ko)
|
rdfs:label
|
- Satz von Sperner (de)
- 슈페르너의 정리 (ko)
- Sperner's theorem (en)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:knownFor
of | |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is dbp:knownFor
of | |
is foaf:primaryTopic
of | |