An Entity of Type: Abstraction100002137, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org:8891

In mathematics, Higman's lemma states that the set of finite sequences over a finite alphabet, as partially ordered by the subsequence relation, is well-quasi-ordered. That is, if is an infinite sequence of words over some fixed finite alphabet, then there exist indices such that can be obtained from by deleting some (possibly none) symbols. More generally this remains true when the alphabet is not necessarily finite, but is itself well-quasi-ordered, and the subsequence relation allows the replacement of symbols by earlier symbols in the well-quasi-ordering of labels. This is a special case of the later Kruskal's tree theorem. It is named after Graham Higman, who published it in 1952.

Property Value
dbo:abstract
  • In mathematics, Higman's lemma states that the set of finite sequences over a finite alphabet, as partially ordered by the subsequence relation, is well-quasi-ordered. That is, if is an infinite sequence of words over some fixed finite alphabet, then there exist indices such that can be obtained from by deleting some (possibly none) symbols. More generally this remains true when the alphabet is not necessarily finite, but is itself well-quasi-ordered, and the subsequence relation allows the replacement of symbols by earlier symbols in the well-quasi-ordering of labels. This is a special case of the later Kruskal's tree theorem. It is named after Graham Higman, who published it in 1952. (en)
  • En mathématiques, le lemme de Higman est un résultat de la théorie des ordres qui affirme que, pour un ensemble muni d'un bel ordre, l'ensemble des mots finis sur muni de l'ordre sous-mot est également un bel ordre. C'est un cas particulier du théorème de Kruskal sur les arbres, qui se généralise à son tour en le théorème de Robertson-Seymour sur les graphes. Ce lemme est dû à Graham Higman, qui l'a publié en 1952. (fr)
dbo:wikiPageID
  • 4187137 (xsd:integer)
dbo:wikiPageLength
  • 1718 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1119931639 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • In mathematics, Higman's lemma states that the set of finite sequences over a finite alphabet, as partially ordered by the subsequence relation, is well-quasi-ordered. That is, if is an infinite sequence of words over some fixed finite alphabet, then there exist indices such that can be obtained from by deleting some (possibly none) symbols. More generally this remains true when the alphabet is not necessarily finite, but is itself well-quasi-ordered, and the subsequence relation allows the replacement of symbols by earlier symbols in the well-quasi-ordering of labels. This is a special case of the later Kruskal's tree theorem. It is named after Graham Higman, who published it in 1952. (en)
  • En mathématiques, le lemme de Higman est un résultat de la théorie des ordres qui affirme que, pour un ensemble muni d'un bel ordre, l'ensemble des mots finis sur muni de l'ordre sous-mot est également un bel ordre. C'est un cas particulier du théorème de Kruskal sur les arbres, qui se généralise à son tour en le théorème de Robertson-Seymour sur les graphes. Ce lemme est dû à Graham Higman, qui l'a publié en 1952. (fr)
rdfs:label
  • Higman's lemma (en)
  • Lemme de Higman (fr)
owl:differentFrom
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License